تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Independence Polynomial
المؤلف: Burger, A. P.; Cockayne, E. J.; and Mynhardt, C. M.
المصدر: "Domination and Irredundance in the Queens Graph." Disc. Math. 163
الجزء والصفحة: ...
19-4-2022
1588
Let be the number of independent vertex sets of cardinality in a graph . The polynomial
(1) |
where is the independence number, is called the independence polynomial of (Gutman and Harary 1983, Levit and Mandrescu 2005). It is also goes by several other names, including the independent set polynomial (Hoede and Li 1994) or stable set polynomial (Chudnovsky and Seymour 2004).
The independence polynomial is closely related to the matching polynomial. In particular, since independent edge sets in the line graph correspond to independent vertex sets in the original graph , the matching-generating polynomial of a graph is equal to the independence polynomial of the line graph of (Levit and Mandrescu 2005):
(2) |
The independence polynomial is also related to the clique polynomial by
(3) |
where denotes the graph complement (Hoede and Li 1994), and to the vertex cover polynomial by
(4) |
where is the vertex count of (Akban and Oboudi 2013).
The independence polynomial of a disconnected graph is equal to the product of independence polynomials of its connected components.
Precomputed independence polynomials for many named graphs in terms of a variable can be obtained in the Wolfram Language using GraphData[graph, "IndependencePolynomial"][x].
The following table summarizes closed forms for the independence polynomials of some common classes of graphs. Here, , , and .
graph | |
Andrásfai graph | |
barbell graph | |
book graph | |
centipede graph | |
cocktail party graph | |
complete bipartite graph | |
complete graph | |
complete tripartite graph | |
crossed prism graph | |
crown graph | |
cycle graph | |
gear graph | |
helm graph | |
ladder graph | |
ladder rung graph | |
Möbius ladder | |
pan graph | |
path graph | |
prism graph | |
star graph | |
sun graph | |
sunlet graph | |
triangular graph | |
wheel graph |
The following table summarizes the recurrence relations for independence polynomials for some simple classes of graphs.
graph | order | recurrence |
Andrásfai graph | 3 | |
antiprism graph | 3 | |
barbell graph | 3 | |
book graph | 2 | |
centipede graph | 2 | |
cocktail party graph | 2 | |
complete bipartite graph | 2 | |
crossed prism graph | 2 | |
crown graph | 3 | |
cycle graph | 2 | |
gear graph | 3 | |
helm graph | 3 | |
ladder graph | 2 | |
ladder rung graph | 1 | |
Möbius ladder | 3 | |
pan graph | 2 | |
path graph | 2 | |
prism graph | 3 | |
star graph | 2 | |
sun graph | 2 | |
sunlet graph | 2 | |
web graph | 3 | |
wheel graph | 3 |
Nonisomorphic graphs do not necessarily have distinct independence polynomials. The following table summarizes some co-independence graphs.
independence polynomial | graphs | |
4 | , path graph | |
4 | paw graph, square graph | |
5 | , | |
5 | butterfly graph, house graph, kite graph, | |
5 | banner graph, bull graph, | |
5 | fork graph, , | |
5 | house X graph, wheel graph | |
5 | gem graph, , -lollipop graph | |
5 | cycle graph , -tadpole graph | |
5 | dart graph, complete bipartite graph |
The independence polynomial of a tree is unimodal, and the independence polynomial of a claw-free graph is logarithmically concave.
Burger, A. P.; Cockayne, E. J.; and Mynhardt, C. M. "Domination and Irredundance in the Queens' Graph." Disc. Math. 163, 47-66, 1997.
Chudnovsky, M. and Seymour, P. "The Roots of the Stable Set Polynomial of a Claw-Free Graph." 2004. http://www.math.princeton.edu/÷mchudnov/publications.html.
Gutman, I. and Harary, F. "Generalizations of the Matching Polynomial." Utilitas Mathematica 24, 97-106, 1983.
Hoede, C. and Li, X. "Clique Polynomials and Independent Set Polynomials of Graphs." Disc. Math. 125, 219-228, 1994.
Levit, V. E. and Mandrescu, E. "The Independence Polynomial of a Graph--A Survey." In Proceedings of the 1st International Conference on Algebraic Informatics. Held in Thessaloniki, October 20-23, 2005
(Ed. S. Bozapalidis, A. Kalampakas, and G. Rahonis). Thessaloniki, Greece: Aristotle Univ., pp. 233-254, 2005.