1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Vertex Degree

المؤلف:  Skiena, S

المصدر:  Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.

الجزء والصفحة:  ...

29-4-2022

2118

Vertex Degree

VertexDegrees

The degree of a graph vertex v of a graph G is the number of graph edges which touch v. The vertex degrees are illustrated above for a random graph. The vertex degree is also called the local degree or valency. The ordered list of vertex degrees in a given graph is called its degree sequence. A list of vertex degrees of a graph can be computed in the Wolfram Language using VertexDegree[g], and precomputed vertex degrees are available for particular embeddings of many named graphs via GraphData[graph"VertexDegrees"].

The minimum vertex degree in a graph G is denoted delta(G), and the maximum vertex degree is denoted Delta(G) (Skiena 1990, p. 157).

The graph vertex degree of a point v in a graph, denoted rho(v), satisfies

 sum_(i=1)^nrho(v_i)=2E,

where E is the total number of graph edges.

In addition, a connected graph nodes satisfies

 sum_(i=1)^nrho(v_i)>=1/2(n-1),

where the inequality can be made strict except in the case of the singleton graph K_1. However, while this condition is necessary for a graph to be connected, it is not sufficient; an arbitrary graph satisfying the above inequality may be connected or disconnected. In fact, the criterion is not useful for connectedness testing since almost all disconnected graphs (with the exception of some disjoint unions of K_1 and P_2) also satisfy the criterion.

Directed graphs have two types of degrees, known as the indegree and the outdegree.


REFERENCES

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.

EN

تصفح الموقع بالشكل العمودي