تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
قلب المادة
المؤلف: فرانك كلوس
المصدر: فيزياء الجسيمات
الجزء والصفحة: الفصل الرابع (ص41- ص43)
2023-02-23
1029
كانت أولى الدلائل على وجود الإلكترونات داخل الذرة هي اكتشاف أن العناصر الذرية تبعث الضوء بأطوال موجية متمايزة تتجسد - على سبيل المثال - ألوان متباينة بدلا من المدى الكامل لألوان قوس قزح، وهو ما يُطلق عليه الخطوط الطيفية. نعرف في وقتنا الحالي أن ميكانيكا الكم تقصر حالات حركة الإلكترونات داخل الذرات في مجموعة منفصلة، وكل حالة لها مقدار محدد من شدة الطاقة. حين تكون الذرة في أدنى طاقة إجمالية لها يُعرف هذا الوضع باسم «الحالة القاعية»، بينما جميع الأوضاع الأخرى تكون مستويات الطاقة فيها أكبر وتُعرف باسم «حالات الإثارة». تنتج الأطياف الذرية عن إشعاع الضوء أو امتصاصه عندما تقفز إلكترونات هذه الذرات بين حالات الإثارة المختلفة، أو بين حالة الإثارة والحالة القاعية. تظل الطاقة الإجمالية محفوظة، والفارق في الطاقة بين الحالتين الذريتين يساوي طاقة الفوتون الذي جرى إطلاقه أو امتصاصه خلال العملية. وقد كشفت أطياف هذه الفوتونات عن الفوارق بين مستويات الطاقة هذه الذرة، ومن هذه المجموعة الثرية من البيانات أمكن استنتاج صورة لمستويات الطاقة. وهكذا فسَّر تطور ميكانيكا الكم كيفية ظهور أ أنماط مستويات الطاقة: فهي تتحدد وفق طبيعة القوى الكهربية والمغناطيسية التي تربط الإلكترون بالنواة المركزية؛ وتحديدًا في حالة أبسط الذرات - الهيدروجين - ترتبط عن كتب بحقيقة أن شدة القوة الكهربية بين الإلكترون والبروتون تتناقص بالتناسب مع مربع المسافة بينهما.
وقعت مجموعة مشابهة من الظروف في حالة البروتون؛ فحين أُجريت أولى تجارب «مهشمات الذرات» في خمسينيات القرن العشرين وستينياته، اكتشفت العديد من الجسيمات المشابهة للبروتون لكنها أثقل وقصيرة العمر، وتُعرف باسم «التجاوبات» أو الرنين ظهر نطاق كامل من الحالات، وبالنظر للأمر من منظورنا الحالي يبدو من البديهي وجود أدلة على أن البروتون والنيوترون نظمًا تتألف - كما نعرف الآن - من الكواركات، إلا أن الأمر لم يكن بمثل هذا الوضوح وقتها. إن حركة هذه الكواركات هي التي تمنح البروتونات والنيوترونات أحجامها، تماما مثلما تحدد حركة الإلكترونات حجم الذرات. أيضًا الكواركات هي التي تزود البروتونات والنيوترونات بشحناتها الكهربية وخواصها المغناطيسية. ورغم أن الشحنات الكهربية للكواركات التي تؤلف النيوترونات يكون مجموعها في النهاية صفرا، إلا أن مغناطيسيتها المنفردة لا تتلاشى، وهو ما يؤدي إلى وجود العزم المغناطيسي للنيوترون. فقط حين تكون الكواركات في الحالة الأدنى من الطاقة ينشأ الترتيب الذي نسميه البروتون أو النيوترون، أما لو جرى استثارة كوارك واحد أو أكثر إلى مستوى أعلى من الطاقة داخل نطاق الجهد الكهربي الذي يربط بينها، فسيتكون أحد التجاوبات القصيرة العمر ذو طاقة الوضع - أو الكتلة - الأكبر بالتكافؤ مع مقدار الاستثارة. وهكذا تكون الدراسة الطيفية لحالات التجاوبات القصيرة العمر ناتجة عن استثارة الكواركات المؤلفة للبروتونات.
إلى هنا والأمر يشبه ما حدث مع الذرة، حيث أن هناك اختلافات مهمة؛ فحين تُزوَّد الإلكترونات بالمزيد والمزيد من الطاقة، فإنها ترتفع إلى مستويات أعلى من الطاقة، وفي نهاية المطاف تندفع خارجةً من الذرة، وفي هذا السيناريو نقول إن الذرة «مؤينة», كما الحال داخل الشمس. في حالة البروتون، حين يقصف بطاقات عالية ترتفع كواركاته إلى مستويات أعلى، وتُرَى التجاوبات القصيرة العمر. هذه الطاقة تنطلق بسرعة، من خلال انبعاث فوتونات أو جسيمات أخرى - كما سنرى - وتتحلل حالة التجاوب ويعود البروتون أو النيوترون مجددًا إلى حالته الأصلية. لم يسبق أن نجح أحد في تأيين بروتون وحرَّر أحد الكواركات المكونة له على نحو منفصل؛ إذ تبدو الكواركات كما لو أنها محتواة على نحو دائم في مساحة قدرها 15-10 أمتار؛ أي «حجم» البروتون. خلا ذلك، وهو ما ينتج عن طبيعة القوى بين الكواركات، تتشابه القصة نوعيًّا مع قصة الإلكترونات داخل الذرة. فالمستويات المستثارة قصيرة العمر، وتطلق طاقة زائدة عادة على صورة فوتونات أشعة جاما، ثم تعود مجددًا إلى الحالة القاعية (بروتون أو نيوترون). وعلى نحو معاكس، يمكننا استثارة إحدى حالات التجاوب هذه من خلال تشتيت الإلكترونات من البروتونات أو النيوترونات.
آخر أجزاء التشبيه جاءتنا عام 1970. فقد تشتتت حِزَم الإلكترونات - التي تم تعجيلها وصولاً إلى طاقات مقدارها 20 جيجا إلكترون فولت - بعد اصطدامها بالبروتونات في ستانفورد بكاليفورنيا. وعلى نحو مشابه لما حدث مع رذرفورد منذ نصف قرن، لوحظ أن الإلكترونات تتشتت عبر زوايا كبيرة. وهذه نتيجة مباشرة لاصطدام الإلكترونات بالكواركات الجسيمات الأساسية شبه النقطية التي تتألف منها البروتونات.
خلال الثلاثين عامًا التالية جرى التوسع في هذه التجارب إلى طاقات أعلى، وأحدثها ما تم في معجل الهادرونات والإلكترونات (هيرا) في هامبورج بألمانيا. وقد منحتنا صور البروتونات العالية الدقة الناتجة فكرًا أساسية بشأن طبيعة القوى التي تربط بين الكواركات بعضها ببعض، وقد أدى هذا إلى ظهور نظرية للكواركات تعرف باسم نظرية الديناميكا اللونية الكهربية. وقد نجحت قدرة هذه النظرية على وصف تفاعلات الكواركات والجلوونات على مسافات تقل عن 16-10 أمتار في اجتياز كل اختبار تجريبي.