1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الحديثة : فيزياء الجسيمات :

الكشف عن النيوترينوات

المؤلف:  فرانك كلوس

المصدر:  فيزياء الجسيمات

الجزء والصفحة:  الفصل السادس (ص79- ص81)

2023-02-27

988

من غير المرجح بشدة أن يتفاعل أي نيوترينو منفرد مع المادة داخل أي كاشف، لكن في وجود عدد كاف من النيوترينوات والكواشف الكبيرة، من الممكن اصطياد بعض النيوترينوات. الفكرة الأساسية للكشف عن تلك النيوترينوات النادرة هي استغلال ميلها إلى التحول إلى لبتونات مشحونة كهربيًّا - كالإلكترون - حين تصطدم بالمادة، ووقتها يكون من السهل الكشف عن الإلكترون نظرًا لأنه يملك شحنة كهربية. هذه هي الكيفية التي عرفنا بها الكثير عن النيوترينوات التي تنهمر علينا كل ثانية من الشمس.

حين يمر الضوء عبر مادة ما، على غرار الماء، فإنه ينتقل بسرعة أبطأ مما لو انتقل عبر الفضاء الخاوي؛ لذا رغم أنه ليس بمقدور أي شيء التحرك بسرعة تفوق سرعة الضوء في الفراغ، فإنه من الممكن التحرك بسرعة تفوق سرعة الضوء داخل المادة. وحين يتحرك جسيم ما داخل المادة بسرعة تفوق سرعة الضوء، يمكنه أن يتسبب في موجة اصطدامية من نوع ما تُعرف باسم إشعاع شيرينكوف يظهر إشعاع شيرينكوف بزاوية على مسار الجسيم، وكلما عظمت سرعة الجسيم، كبرت الزاوية تهدف تجربة سوبر كاميوكاندي إلى الكشف عن النيوترينوات حين تتفاعل في الماء إما لتكوين إلكترونات أو ميوونات، اعتمادًا على نوع النيوترينو. هذه الجسيمات - على عكس النيوترينوات - تحمل شحنة كهربية ولأنها تتحرك بسرعة تفوق سرعة الضوء داخل الماء، فإنها قادرة على إطلاق إشعاع شيرينكوف. وعن طريق التحليل الحريص لأنماط الضوء، يمكننا التمييز بين الميوونات والإلكترونات المتكونة داخل الكاشف، ومن ثَمَّ التمييز بين النيوترينوات الميوونية والنيوترينوات الإلكترونية

يقع مرصد سادبري للنيوترينوات على عمق 2070 مترًا تحت الأرض في منجم للنيكل في سادبري بأونتاريو، وقلب هذا المرصد وعاء من الأكريليك مملوء بألف طن من «الماء الثقيل»، الديوتريوم، والذي فيه يتحد نيوترون واحد مع البروتون الوحيد المكون لذرة الهيدروجين في مرصد سادبري تتفاعل النيوترينوات الإلكترونية مع النيوترونات الموجودة في الديوتريوم لإنتاج بروتونات وإلكترونات، وتطلق الإلكترونات السريعة الحركة أقماعًا من إشعاع شيرينكوف بينما تنتقل عبر الماء الثقيل يكون ضوء شيرينكوف أنماطا من الحلقات على السطح الداخلي لخزان الماء، تلتقطها آلاف الأنابيب الضوئية المصطفة حول الجدران.

إلا أن السمة الأساسية التي يتسم بها مرصد سادبري للنيوترينوات هو أنه قادر أيضًا على الكشف عن الأنواع الثلاثة من النيوترينوات كلها من خلال التفاعل الفريد لكلّ منها مع الديوتريوم. إن النيوترينو من أي نوع قادر على شطر ذرة الديوتريوم، محرِّرًا النيوترون، الذي يمكن بعدها لأي نواة أن تستحوذ عليه. تُكتشف عملية الاستحواذ هذه عندما تتخلص النواة المنتفخة حديثًا بفعل هذا النيوترون، من طاقتها الإضافية عن طريق إطلاق أشعة جاما، التي بدورها تصنع إلكتروناً وبوزيترونا يخلفان أنماطاً مماثلة لإشعاع شيرينكوف في المياه المحيطة.

بواسطة هذه التجارب أمكن حساب النيوترينوات الآتية من الشمس. وهذه التجارب تؤكد على أن الشمس هي بالفعل محرك اندماج نووي. هناك شك منذ وقت بعيد أن هذه هي الطريقة التي تستعر بها النجوم - كالشمس - إلا أن هذا لم يتأكد يقينًا حتى عام 2002.

شكل 6-4: الإلكترونات أو أشعة بيتا لها كتلة أصغر بكثير من كتلة جسيمات ألفا؛ ومن ثَمَّ فإنها تتحرك بسرعات أعلى بكثير على مستوى الطاقة نفسه. هذا يعني أن الإلكترونات السريعة لا تفقد طاقتها بالسرعة نفسها أثناء تأيين الذرات التي تمر بها. في الصورة نرى المسار المتقطع لإلكترون أشعة بيتا السريع المسارات القصيرة السميكة لا تسببها أشعة بيتا، بل إن الأشعة السينية غير المرئية هي التي قذفت بها من ذرات الغاز الذي يملأ الغرفة، ومساراتها أكثر سمكا لأنها تتحرك على نحو أبطأ من أشعة بيتا؛ ومن ثُمَّ فإنها أكثر تأيينًا للذرات وهي تتمايل لأنها كثيرًا ما تنزاح إلى الجانب بسبب مرورها بتصادمات مرنة مع الإلكترونات الموجودة في ذرات الغاز.3

 

هوامش

(3) © CTR Wilson/Science Museum/Science & Society Picture Library.

 

EN

تصفح الموقع بالشكل العمودي