1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية التحكم :

INTRODUCTION-THE BASIC PROBLEM

المؤلف:  Lawrence C. Evans

المصدر:  An Introduction to Mathematical Optimal Control Theory

الجزء والصفحة:  1-5

10-7-2016

436

THE BASIC PROBLEM.

DYNAMICS. We open our discussion by considering an ordinary differential equation (ODE) having the form

We are here given the initial point x0 ∈ Rn and the function f : Rn → Rn. The unknown is the curve x : [0,∞) → Rn, which we interpret as the dynamical evolution of the state of some “system”.

CONTROLLED DYNAMICS. We generalize a bit and suppose now that f depends also upon some “control” parameters belonging to a set A ⊂ Rm; so that f : Rn×A → Rn. Then if we select some value a ∈ A and consider the corresponding dynamics:

we obtain the evolution of our system when the parameter is constantly set to thevalue a.

The next possibility is that we change the value of the parameter as the system evolves. For instance, suppose we define the function α : [0,∞) → A this way:

for times 0 < t1 < t2 < t3 . . . and parameter values a1, a2, a3,…..∈ A; and we then solve the dynamical equation

The picture illustrates the resulting evolution. The point is that the system may behave quite differently as we change the control parameters.

More generally, we call a function α : [0,∞) → A a control. Corresponding to each control, we consider the ODE

and regard the trajectory x(.) as the corresponding response of the system.

NOTATION. (i) We will write

to display the components of f , and similarly put

We will therefore write vectors as columns in these notes and use boldface for vector-valued functions, the components of which have superscripts.

(ii) We also introduce

to denote the collection of all admissible controls, where

Note very carefully that our solution x(.) of (ODE) depends upon α(.) and the initial condition. Consequently our notation would be more precise, but more complicated,  if we were to write

displaying the dependence of the response x(.) upon the control and the initial value.

PAYOFFS. Our overall task will be to determine what is the “best” control for our system. For this we need to specify a specific payoff (or reward) criterion. Let us define the payoff functional

where x(.) solves (ODE) for the control α(.). Here r : Rn ×A → R and g : Rn → R are given, and we call r the running payoff and g the terminal payoff. The terminal time   T > 0 is given as well.

THE BASIC PROBLEM. Our aim is to find a control α(.), which maximizes the payoff. In other words, we want

for all controls α(.) ∈ A. Such a control α(.) is called optimal.

This task presents us with these mathematical issues:

(i) Does an optimal control exist?

(ii) How can we characterize an optimal control mathematically?

(iii) How can we construct an optimal control?

These turn out to be sometimes subtle problems, as the following collection of examples illustrates.


References

[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.

[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.

[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.

[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.

[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.

[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.

[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.

[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.

[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).

[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.

[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.

[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.

[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.

[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.

[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.

[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.

[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.

[T] William J. Terrell, Some fundamental control theory I: Controllability, observability,  and duality, American Math Monthly 106 (1999), 705–719.

 

 

EN

تصفح الموقع بالشكل العمودي