تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
INTRODUCTION-THE BASIC PROBLEM
المؤلف: Lawrence C. Evans
المصدر: An Introduction to Mathematical Optimal Control Theory
الجزء والصفحة: 1-5
10-7-2016
436
THE BASIC PROBLEM.
DYNAMICS. We open our discussion by considering an ordinary differential equation (ODE) having the form
We are here given the initial point x0 ∈ Rn and the function f : Rn → Rn. The unknown is the curve x : [0,∞) → Rn, which we interpret as the dynamical evolution of the state of some “system”.
CONTROLLED DYNAMICS. We generalize a bit and suppose now that f depends also upon some “control” parameters belonging to a set A ⊂ Rm; so that f : Rn×A → Rn. Then if we select some value a ∈ A and consider the corresponding dynamics:
we obtain the evolution of our system when the parameter is constantly set to thevalue a.
The next possibility is that we change the value of the parameter as the system evolves. For instance, suppose we define the function α : [0,∞) → A this way:
for times 0 < t1 < t2 < t3 . . . and parameter values a1, a2, a3,…..∈ A; and we then solve the dynamical equation
The picture illustrates the resulting evolution. The point is that the system may behave quite differently as we change the control parameters.
More generally, we call a function α : [0,∞) → A a control. Corresponding to each control, we consider the ODE
and regard the trajectory x(.) as the corresponding response of the system.
NOTATION. (i) We will write
to display the components of f , and similarly put
We will therefore write vectors as columns in these notes and use boldface for vector-valued functions, the components of which have superscripts.
(ii) We also introduce
to denote the collection of all admissible controls, where
Note very carefully that our solution x(.) of (ODE) depends upon α(.) and the initial condition. Consequently our notation would be more precise, but more complicated, if we were to write
displaying the dependence of the response x(.) upon the control and the initial value.
PAYOFFS. Our overall task will be to determine what is the “best” control for our system. For this we need to specify a specific payoff (or reward) criterion. Let us define the payoff functional
where x(.) solves (ODE) for the control α(.). Here r : Rn ×A → R and g : Rn → R are given, and we call r the running payoff and g the terminal payoff. The terminal time T > 0 is given as well.
THE BASIC PROBLEM. Our aim is to find a control α∗(.), which maximizes the payoff. In other words, we want
for all controls α(.) ∈ A. Such a control α∗(.) is called optimal.
This task presents us with these mathematical issues:
(i) Does an optimal control exist?
(ii) How can we characterize an optimal control mathematically?
(iii) How can we construct an optimal control?
These turn out to be sometimes subtle problems, as the following collection of examples illustrates.
References
[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.
[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.
[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.
[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.
[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.
[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.
[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.
[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).
[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.
[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.
[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.
[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.
[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.
[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.
[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.
[T] William J. Terrell, Some fundamental control theory I: Controllability, observability, and duality, American Math Monthly 106 (1999), 705–719.