1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية التحكم :

THE PONTRYAGIN MAXIMUM PRINCIPLE-MAXIMUM PRINCIPLE WITH STATE CONSTRAINTS

المؤلف:  Lawrence C. Evans

المصدر:  An Introduction to Mathematical Optimal Control Theory

الجزء والصفحة:  64-65

9-10-2016

446

We return once again to our usual setting:

for τ = τ [α(.)], the first time that x(τ ) = x1. This is the fixed endpoint problem.

STATE CONSTRAINTS. We introduce a new complication by asking that our dynamics x(.) must always remain within a given region R ⊂ Rn. We will as above suppose that R has the explicit representation

                                  R = {x ∈ Rn | g(x) ≤ 0}

for a given function g(.) : Rn → R.

DEFINITION. It will be convenient to introduce the quantity

                          c(x, a) := ∇g(x) .f (x, a).

Notice that

if x(t) ∈ ∂R for times s0 ≤ t ≤ s1, then c(x(t),α(t)) ≡ 0 (s0 ≤ t ≤ s1).

This is so since f is then tangent to ∂R, whereas ∇g is perpendicular.

Then there exists a costate function p(.) : [s0, s1] → Rn such that (ODE) holds.

There also exists λ(.) : [s0, s1] → R such that for times s0 ≤ t ≤ s1 we have

To keep things simple, we have omitted some technical assumptions really needed for the Theorem to be valid.

REMARKS AND INTERPRETATIONS (i) Let A ⊂ Rm be of this form:

                           A = {a ∈ Rm | g1(a) ≤ 0, . . . , gs(a) ≤ 0}

for given functions g1, . . . , gs : Rm → R. In this case we can use Lagrange multipliersto deduce from (M′) that

The function λ(.) here is that appearing in (ADJ′).

If x(t) lies in the interior of R for say the times 0 ≤ t < s0, then the ordinary Maximum Principle holds.

(ii) Jump conditions. In the situation above, we always have

p (s0 − 0) = p∗(s0 + 0),  

where s0 is a time that x hits ∂R. In other words, there is no jump in p when we hit the boundary of the constraint ∂R.

 However,

p (s1 + 0) = p (s1 − 0) − λ (s1)∇g(x (s1));

this says there is (possibly) a jump in p(.) when we leave ∂R.

References

[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.

[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.

[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.

[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.

[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.

[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.

[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.

[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.

[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).

[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.

[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.

[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.

[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.

[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.

[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.

[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.

[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.

[T] William J. Terrell, Some fundamental control theory I: Controllability, observability,  and duality, American Math Monthly 106 (1999), 705–719.

 

 

 

EN

تصفح الموقع بالشكل العمودي