1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية التحكم :

LINEAR TIME-OPTIMAL CONTROL-THE MAXIMUM PRINCIPLE FOR LINEAR TIME-OPTIMAL CONTROL

المؤلف:  Lawrence C. Evans

المصدر:  An Introduction to Mathematical Optimal Control Theory

الجزء والصفحة:  32-36

8-10-2016

576

The really interesting practical issue now is understanding how to compute an optimal control α(.).

DEFINITION. We define K(t, x0) to be the reachable set for time t. That is,  K(t, x0) = {x1| there exists α(.) ∈ A which steers from x0 to x1at time t}.

Since x(.) solves (ODE), we have x1 ∈ K(t, x0) if and only if

for some control α(.) ∈ A.

THEOREM 1.1 (GEOMETRY OF THE SET K). The set K(t, x0) is convex and closed.

Proof. 1. (Convexity) Let x1, x2 ∈ K(t, x0). Then there exists α12 ∈ A such that

and hence λx1 + (1 − λ)x2 ∈ K(t, x0).

2. (Closedness) Assume xk ∈ K(t, x0) for (k = 1, 2, . . . ) and xk → y. We must show y ∈ K(t, x0). As xk ∈ K(t, x0), there exists αk(.) ∈ A such that

According to Alaoglu’s Theorem, there exist a subsequence kj → ∞ and α ∈ Asuch that αk⇀α. Let k = kj → ∞ in the expression above, to find

Thus y ∈ K(t, x0), and hence K(t, x0) is closed.

NOTATION. If S is a set, we write ∂S to denote the boundary of S.

Recall that τ denotes the minimum time it takes to steer to 0, using the optimal control α. Note that then 0 ∈ ∂K(τ, x0).

THEOREM 1.2 (PONTRYAGIN MAXIMUM PRINCIPLE FOR LINEAR TIME-OPTIMAL CONTROL). There exists a nonzero vector h such that

for each time 0 ≤ t ≤ τ.

INTERPRETATION. The significance of this assertion is that if we know h then the maximization principle (M) provides us with a formula for computing α(.), or at least extracting useful information.

We will see in the next chapter that assertion (M) is a special case of the general Pontryagin Maximum Principle.

Proof. 1. We know 0 ∈ ∂K(τ , x0). Since K( , x0) is convex, there exists a supporting plane to K(τ, x0) at 0; this means that for some g = 0, we have

                              g. x1 ≤ 0 for all x1 ∈ K(τ, x0 ).

2. Now x1 ∈ K(τ, x0) if and only if there exists α(.) ∈ A such that

Since g . x1 ≤ 0, we deduce that

for all controls α(.) ∈ A.

3. We claim now that the foregoing implies

for almost every time s.

For suppose not; then there would exist a subset E ⊂ [0, τ] of positive measure,  such that

for s ∈ E. Design a new control αˆ (.) as follows:

where α(s) is selected so that

This contradicts Step 2 above.

For later reference, we pause here to rewrite the foregoing into different notation;  this will turn out to be a special case of the general theory developed later in Chapter

4. First of all, define the Hamiltonian

                                 H(x, p, a) := (Mx + Na) .p            (x, p ∈ Rn, a ∈ A).

THEOREM 1.3 (ANOTHER WAY TO WRITE PONTRYAGIN MAXIMUM PRINCIPLE FOR TIME-OPTIMAL CONTROL). Let α(.) be a time

optimal control and x(.) the corresponding response.

Then there exists a function p(.) : [0, τ] → Rn, such that

We call (ADJ) the adjoint equations and (M) the maximization principle. The function p(.) is the costate.

Proof. 1. Select the vector h as in Theorem 1.2, and consider the system

The solution is

and hence

2. We know from condition (M) in Theorem 1.2 that

3. Finally, we observe that according to the definition of the Hamiltonian H,

the dynamical equations for x(.), p(.) take the form (ODE) and (ADJ), as stated in the Theorem.

References

[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.

[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.

[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.

[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.

[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.

[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.

[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.

[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.

[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).

[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.

[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.

[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.

[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.

[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.

[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.

[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.

[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.

[T] William J. Terrell, Some fundamental control theory I: Controllability, observability,  and duality, American Math Monthly 106 (1999), 705–719.

EN

تصفح الموقع بالشكل العمودي