تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
هيلبرت – دافيد
المؤلف: دعنا, عدنان (2010)
المصدر: معجم علماء الرياضيات
الجزء والصفحة: 341-344
20-9-2016
903
هيلبرت – دافيد
(1862 – 1943م)
عالم ومكتشف رياضي الماني، ولد في كونيكسبرج وتوفي في جونتجن، درس اسس الرياضيات في اخر حياته.
من أعماله :
كان موضوع اطروحته الاولى عن المتغيرات وبقي هذا الموضوع ضمن المواضيع الاساسية لابحاثه حتى عام 1893، وخلاصة ما توصل اليه : (للمتغيرات اساس كامل ومحدد، هذا يعني انه باستطاعتنا ايجاد عدد محدد من المتغيرات). وأخيراً نظرية عدم امكانية التحول عند هيلبرت. بعدها تحول الى نظرية الاعداد الجبرية.
ناقش نظرية جالوا عن الاجسام الى ان اصبحت ابحاثه منهجية وخلال ثلاث سنوات وضع مجلداً يختصر نظرية الاعداد الجبرية – وضح وناقش فيه آراء العديد من العلماء السابقين والمعاصرين.
في التحليل الرياضي :
هناك مسالتان اساسيتان شغلتا اهتمامات المحللين (عند نهاية القرن التاسع عشر) وهما :
(مسالة دير كليه) و (دراسة اهتزازات جسم المطاط) تناول عام 1899 مسالة دير كيلة في اطار حساب المتغيرات، حيث استخدام الطريقة المباشرة للحصول على برهان ثابت لهذه المسالة.
هذه المبادرة التي قام بها هيلبرت استخدمت لدى علماء اخرين وخاصة في مجال النظرية الحديثة للمعادلات التفاضلية والمعادلات الاهليجية.
لقد حصل هلبرت على نتائج مهمة في حساب المتغيرات وحاول استخدام هذا الحساب لتوحيد التحليل، لكنه ترك هذا الموضوع واتجه الى نظرية المعادلات المتكاملة التي فتحت له طريق التحقيق البرنامج المقترح من قبل (بوانكارية) : فعالج بنظرية واحدة مسالة دير كيله ومسالة الاهتزازات وقد جمع هلبرت كل ابحاثه حول المعادلات المتكاملة (في عام 1912) التي ظهرت لديه بين (1904 و 1910) في كتاب واحد نشر بعنوان مميزات نظرية عامة للمعادلات المتكاملة الذي اشتمل على أسس التحليل التابعي.
وقد تناول مواضيع عديدة تحت هذا العنوان منها : (نظريات تتعلق بالهندسة التفاضلية الكسيكية).
الاسلوب الاكسيوماتيكي :
كانت ابحاثه حول اسس الهندسة انطلاقا لبعض النواحي المنهجية والفلسفية، بقي النموذج الاستنتاج في الهندسة الوارد في كتاب الاصول او العناصر عند اقليدس (منذ زمن الاغريق) يعتبر نموذجاً لمدى صحة الرياضيات، الى عام 1882 حيث جاء Mr. pasch وعرف فرضيات اخرى مثل (الوجود بين نقطتين)، في حين ان هليبرت قدم اول بناء اكسوماتي كامل للهندسة في عام 1899 دون التناقص مع التحليل، استخدم نظام المسلمات مقسم الى (5) زمر، اهم ما فيه الصيغ المستقلة عن الواقع الملموس.
اصبح ممكنا التخلي عن مسلمة اقليدس الخامسة مما اتاح بناء هندسة لا اقليدية، وكما ذكر سابقاً فان نظام هيلبرت للمسلمات لا يتعارض مع التحليل (أي نظرية الاعداد الحقيقية).
برنامج هيلبرت ونظرية البرهان :
ان احسن نظرية للبرهنة هي (المنطق الموسع حول نظرية المجموعات الكلاسيكية) التي نشرت 1903 قبل نشر كانتور نظرية المجموعات بفترة قليلة.
لقد اخذ هيلبرت على عاتقه انقاذ الوضع الكلاسيكي للرياضيات وتجسيد وسائل جديدة بامكانها اعطاء براهين مطلقة غير متناقصة بالنسبة او لا للحساب وثانيا للتحليل، فقد اعتمد صياغة عدم التناقص المطلق في نظام شكلي يحتوي كل التحليل الكلاسيكي بما فيه نظرية المجموعات والمنطلق موجودة بشكل مسلمات وقواعد استنتاجية، وهذا البرنامج لا يمكن تحقيقه دون التورط في حلقات مفرغة.
إن حدود وامكانيات هذا البرنامج لا تصبح واضحة الا بعد وضعها ضمن نطاق الفلسفة الشكلية للرياضيات التي اسسها هيلبرت.
فلسفة الرياضيات :
لا يقوم التفكير الاسيكوماتيكي عند هيلبرت على فلسفة الرياضيات بل على فلسفة العلم بشكل عام.
عند صياغة المسلمات العميقة، نصل الى تطلعات اكثر بعيدا في التفكير العلمي نفسه أي في عمق الاهداف العلمية، ان البنية الاكسيوماتية هي اعلى درجة من تطور علم ما، انه الهدف الذي يؤدي الى التقدم.
يقول هيلبرت : ان الطريقة الاكسيوماتية تحرر العلم من كل الرواسب السابقة ومن الافكار البسيطة، لا تحقق الدقة فقط بل تؤدي الى الابداع، ان وجود المسلمات ضمانة لحصة النتائج.
وهذه النظرية تخالف نظرية G Frege الذي ينظر الى المسلمات وكلها نظريات.
عزز هيلبرت فكرة البراهين هذه التي تعالج مسالة نظرية المعرفة ومن ثم عزز اهمية المنهجية الاكسيوماتية العامة ونواحيها الفلسفية، كما دقق دور الاستنتاج الشكلي والتفكير الرياضي ضمن اطار التفكير البشري.
رغم المواجهات التي واجهها هيلبرتن عند اليوباركي وعند بروور، لاقت افكار هيلبرت انتشارا كبيرا، وتقدما في اساليب بناء الاسس الرياضية.