تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Peter Ludwig Mejdell Sylow
المؤلف: H Freudenthal
المصدر: Biography in Dictionary of Scientific Biography
الجزء والصفحة: ...
22-12-2016
387
Died: 7 September 1918 in Christiania (now Oslo), Norway
Ludwig Sylow studied at Christiania University and won a mathematics contest in 1853. He then took the high school teacher examination in 1856 and, as no university post was available, taught in the town of Frederikshald from 1858 to 1898.
Sylow continued his mathematical studies however (see [2])
at first working on elliptic functions in the tradition of Abel and Jacobi, inspired by the professor of pure mathematics Ole Jacob Broch. Finding Abel's papers on the solvability of algebraic equations by radicals more interesting, Sylow was led from them (by the professor in applied mathematics, Carl Bjerknes) to Galois.
In 1861 Sylow obtained a scholarship to travel and visited Berlin and Paris. In Paris he attended lectures by Chasles on the theory of conics, by Liouville on rational mechanics and by Duhamel on the theory of limits. He says, in the report he wrote at the end of the scholarship, that he also:-
made myself acquainted with newer works, particularly in the theory of equations.
In Berlin he had useful discussions with Kronecker but was unable to attend courses by Weierstrass who was ill at the time.
In 1862 Sylow lectured at the University of Christiania, substituting for Broch. In his lectures Sylow explained Abel's and Galois's work on algebraic equations. A summary of these lectures is presented in [2]. It is worth noting that although he had not proved 'Sylow's theorems' at this time (he published them 10 years later) he did pose a question about them. After proving Cauchy's theorem that a group of order divisible by a prime p has a subgroup of order p, Sylow asks whether it can be generalised to powers of p.
Between 1873 and 1881 Sylow and Lie prepared an edition of Abel's complete work. Lie said that most of the work was done by Sylow. However Sylow's fame rests on one 10 page paper published in 1872.
In this paper Théorèmes sur les groupes de substitutions which Sylow published in Mathematische Annalen Volume 5 (pages 584 to 594) appear the three Sylow theorems. Cauchy had already proved that a group whose order is divisible by a prime p has an element of order p. Sylow proved what is perhaps the most profound result in the theory of finite groups.
If pn is the largest power of the prime p to divide the order of a group G then
Almost all work on finite groups uses Sylow's theorems.
Sylow became an editor of Acta Mathematica and, in 1894, he was awarded an honorary doctorate from the university of Copenhagen.
Lie had a special chair created for Sylow at Christiania University and Sylow taught at the university from 1898.
Articles: