1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : علماء الرياضيات : 1880to1884 :

Paul Koebe

المؤلف:  H Freudenthal

المصدر:  Biography in Dictionary of Scientific Biography

الجزء والصفحة:  ...

31-5-2017

285

Born: 15 February 1882 in Luckenwalde, Germany

Died: 6 August 1945 in Leipzig, Germany


Paul Koebe's father was Hermann Koebe and his mother was Emma Kramer. Hermann Koebe owned a factory and was able to give his son a good education. Koebe attended a realgymnasium in Berlin. He entered this school in 1891 and there he studied religion, Latin and modern languages, history and geography, and mathematics and science. The course, which was based more on practical applications than that of the more academic gymnasium, still qualified Koebe to enter university.

He studied first at Kiel University which he entered in 1900 but after one semester he moved to Berlin University where he was to study for five years. At Berlin his thesis was directed by Herman Schwarz and his additional examiner for the oral on his thesis was Friedrich Schottky who had been appointed to Berlin in 1902 while Koebe was in the middle of his studies. Between 1904 and 1905 Koebe studied at the Charlottenburg Technische Hochschule, then he undertook research at Göttingen for his habilitation presenting his thesis in 1907.

Koebe was appointed to Leipzig University in 1910 as an extraordinary professor of mathematics. He became an ordinary professor in 1914 when he accepted a position at Jena university. He returned to Leipzig, this time as an ordinary professor, in 1926.

Koebe's work was all on complex functions, his most important results being on the uniformisation of Riemann surfaces. Shortly after 1900 Koebe established the general principle of uniformisation which had been originally conceived by Klein and Poincaré. Koebe's proof of the uniformisation theorem has been described as:-

... arguably one of the great theorems of the century.

The article [5] describes his contributions in some detail and gives a list of 68 publications by Koebe. These are not, however, a collection of great works on a par with his proof of the uniformisation theorem. Koebe's style was pompous and chaotic and Koebe anecdotes were famous in Germany between the two wars. He did make other important contributions, however, and his circle domain conjecture is still being attacked. A special case was proved in 1993 by Z-X He and O Schramm.

Freudenthal writes in [1]:-

He tended to deal broadly with special cases of a general theory by a variety of methods ...

Freudenthal also tells us that Koebe's life-style was, as his mathematics, chaotic. It is unclear from what Freudenthal writes whether he is implying that Koebe required a wife to help organise his life but certainly he had no wife, remaining a bachelor all his life.


 

  1. H Freudenthal, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830905192.html

Books:

  1. H Beckert and H Schumann (eds.), 100 Jahre Mathematisches Seminar der Karl-Marx-Universität Leipzig (Berlin, 1981).
  2. W Hayman, Function theory 1900-1950, in Development of mathematics 1900-1950, Luxembourg, 1992 (Basel, 1994), 369-384.
  3. O Volk, Paul Koebe, Neue deutsche Biographie XII (1980).

Articles:

  1. L Bieberbach, Das Werk Paul Koebes, Jahresberichte der Deutschen Mathematiker-Vereinigung 70 (3) (1) (1967/1968), 148-158.

 

EN

تصفح الموقع بالشكل العمودي