Read More
Date: 20-12-2018
574
Date: 26-12-2018
821
Date: 23-12-2018
377
|
(1) |
where is a Bessel function of the first kind and is a gamma function. It can be derived from Sonine's integral. With , the integral becomes Parseval's integral.
In complex analysis, let be a harmonic function on a neighborhood of the closed disk , then for any point in the open disk ,
(2) |
In polar coordinates on ,
(3) |
where and is the Poisson kernel. For a circle,
(4) |
For a sphere,
(5) |
where
REFERENCES:
Krantz, S. G. "The Poisson Integral." §7.3.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 92-93, 1999.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 373-374, 1953.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|