Read More
Date: 10-6-2019
2178
Date: 25-3-2019
1599
Date: 29-9-2018
2070
|
The second fundamental theorem of calculus holds for a continuous function on an open interval and any point in , and states that if is defined by the integral (antiderivative)
then
at each point in , where is the derivative of .
REFERENCES:
Anton, H. "The Second Fundamental Theorem of Calculus." §5.10 in Calculus: A New Horizon, 6th ed. New York: Wiley, pp. 345-348, 1999.
Apostol, T. M. "Primitive Functions and the Second Fundamental Theorem of Calculus." §5.3 in Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 205-207, 1967.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|