Read More
Date: 20-8-2018
1907
Date: 11-6-2019
1160
Date: 12-10-2018
1463
|
A proof of a formula on limits based on the epsilon-delta definition. An example is the following proof that every linear function () is continuous at every point . The claim to be shown is that for every there is a such that whenever , then . Now, since
(1) |
|||
(2) |
|||
(3) |
it is clear that
(4) |
Hence, for all , is the number fulfilling the claim.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|