Read More
Date: 18-8-2018
1612
Date: 16-4-2019
2465
Date: 16-8-2018
1792
|
The function is defined through the equation
(1) |
where is a Bessel function of the first kind, so
(2) |
where is the imaginary part.
It is implemented in the Wolfram Language as KelvinBei[nu, z].
has the series expansion
(3) |
where is the gamma function (Abramowitz and Stegun 1972, p. 379), which can be written in closed form as
(4) |
where is a modified Bessel function of the first kind.
The special case , commonly denoted , corresponds to
(5) |
where is the zeroth order Bessel function of the first kind. The function has the series expansion
(6) |
Closed forms include
(7) |
|||
(8) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 379-381, 1972.
Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Kelvin Functions , , and ." §1.7 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 29-30, 1990.
Spanier, J. and Oldham, K. B. "The Kelvin Functions." Ch. 55 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 543-554, 1987.
|
|
بـ3 خطوات بسيطة.. كيف تحقق الجسم المثالي؟
|
|
|
|
|
دماغك يكشف أسرارك..علماء يتنبأون بمفاجآتك قبل أن تشعر بها!
|
|
|
|
|
العتبة العباسية المقدسة تواصل إقامة مجالس العزاء بذكرى شهادة الإمام الكاظم (عليه السلام)
|
|
|