المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Oblate Spheroidal Wave Function  
  
1441   05:19 مساءً   date: 22-7-2019
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : "Spheroidal Wave Functions." Ch. 21 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York:...
Page and Part : ...


Read More
Date: 6-8-2019 3307
Date: 17-9-2018 1505
Date: 24-9-2019 1752

Oblate Spheroidal Wave Function

The wave equation in oblate spheroidal coordinates is

 del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] 
 +partial/(partialxi_2)[(1-xi_2^2)(partialPhi)/(partialxi_2)]+(xi_1^2+xi_2^2)/((xi_1^2+1)(1-x_2^2))(partial^2Phi)/(partialphi^2) 
 +c^2(xi_1^2+xi_2^2)Phi=0,

(1)

where

 c=1/2ak.

(2)

Substitute in a trial solution

 Phi=R_(mn)(c,xi_1)S_(mn)(c,xi_2)cos; sin(mphi).

(3)

The radial differential equation is

 d/(dxi_2)[(1+xi_2^2)d/(dxi_2)S_(mn)(c,xi_2)]-(lambda_(mn)-c^2xi_2^2+(m^2)/(1+xi_2^2))R_(mn)(c,xi_2)=0,

(4)

and the angular differential equation is

 d/(dxi_2)[(1-xi_2^2)d/(dxi_2)S_(mn)(c,xi_2)]-(lambda_(mn)-c^2xi_2^2+(m^2)/(1-xi_2^2))R_(mn)(c,xi_2)=0

(5)

(Abramowitz and Stegun 1972, pp. 753-755; Zwillinger 1997, p. 127).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Spheroidal Wave Functions." Ch. 21 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 751-759, 1972.

Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 127, 1997.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.