Read More
Date: 25-8-2018
1279
Date: 29-7-2019
1817
Date: 19-9-2018
1766
|
The hyperbolic cosine integral, often called the "Chi function" for short, is defined by
(1) |
where is the Euler-Mascheroni constant. The function is given by the Wolfram Language command CoshIntegral[z].
The Chi function has a unique real root at (OEIS A133746).
The derivative of is
(2) |
and the integral is
(3) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Sine and Cosine Integrals." §5.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 231-233, 1972.
Sloane, N. J. A. Sequence A133746 in "The On-Line Encyclopedia of Integer Sequences."
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|