Read More
Date: 23-6-2019
![]()
Date: 21-7-2019
![]()
Date: 28-4-2019
![]() |
![]() |
![]() |
The hyperbolic cosine integral, often called the "Chi function" for short, is defined by
![]() |
(1) |
where is the Euler-Mascheroni constant. The function is given by the Wolfram Language command CoshIntegral[z].
The Chi function has a unique real root at (OEIS A133746).
The derivative of is
![]() |
(2) |
and the integral is
![]() |
(3) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Sine and Cosine Integrals." §5.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 231-233, 1972.
Sloane, N. J. A. Sequence A133746 in "The On-Line Encyclopedia of Integer Sequences."
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|