Pollaczek Polynomial
المؤلف:
Szegö, G.
المصدر:
Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc.,
الجزء والصفحة:
pp. 393-400
6-8-2019
2074
Pollaczek Polynomial
Let
, and write
 |
(1)
|
Then define
by the generating function
 |
(2)
|
The generating function may also be written
![f(x,w)=(1-2xw+w^2)^(-1/2)exp[(ax+b)sum_(m=1)^infty(w^m)/mU_(m-1)(x)],](http://mathworld.wolfram.com/images/equations/PollaczekPolynomial/NumberedEquation3.gif) |
(3)
|
where
is a Chebyshev polynomial of the second kind.
Pollaczek polynomials satisfy the recurrence relation
![nP_n(x;a,b)=[(2n-1+2a)x+2b]P_(n-1)(x;a,b)-(n-1)P_(n-2)(x;a,b)](http://mathworld.wolfram.com/images/equations/PollaczekPolynomial/NumberedEquation4.gif) |
(4)
|
for
, 3, ... with
In terms of the hypergeometric function
,
 |
(7)
|
They obey the orthogonality relation
![int_(-1)^1P_n(x;a,b)P_m(x;a,b)w(x;a,b)dx=[n+1/2(a+1)]^(-1)delta_(nm),](http://mathworld.wolfram.com/images/equations/PollaczekPolynomial/NumberedEquation6.gif) |
(8)
|
where
is the Kronecker delta, for
, 1, ..., with the weighting function
|
{cosh[pih(theta)]}^(-1). " class="numberedequation" src="http://mathworld.wolfram.com/images/equations/PollaczekPolynomial/NumberedEquation7.gif" style="border:0px; height:17px; width:250px" />
|
(9)
|
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة