Read More
Date: 23-5-2019
1599
Date: 21-9-2019
1162
Date: 14-9-2019
2535
|
(1) |
where is a Hermite polynomial (Watson 1933; Erdélyi 1938; Szegö 1975, p. 380). The generating function
(2) |
where is the floor function, can be derived from this equation (Doetsch 1930; Szegö 1975, p. 380). The more straightforward sum with replaced by in the denominator is given by
(3) |
REFERENCES:
Almqvist, G. and Zeilberger, D. "The Method of Differentiating Under the Integral Sign." J. Symb. Comput. 10, 571-591, 1990.
Doetsch, G. "Integralgleichenschaften der Hermiteschen Polynome." Math. Z. 32, 587-599, 1930.
Erdélyi, A. "Über eine erzeugende Funktion von Produkten Hermitescher Polynome." Math. Z. 44, 201-211, 1938.
Foata, D. "A Combinatorial Proof of the Mehler Formula." J. Comb. Th. Ser. A 24, 250-259, 1978.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 194-195, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Rainville, E. D. Special Functions. New York: Chelsea, p. 198, 1971.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., p. 380, 1975.
Watson, G. N. "Notes on Generating Functions of Polynomials: (2) Hermite Polynomials." J. London Math. Soc. 8, 194-199, 1933.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|