Read More
Date: 15-1-2020
![]()
Date: 29-12-2020
![]()
Date: 25-12-2020
![]() |
Given a hereditary representation of a number in base
, let
be the nonnegative integer which results if we syntactically replace each
by
(i.e.,
is a base change operator that 'bumps the base' from
up to
). The hereditary representation of 266 in base 2 is
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
so bumping the base from 2 to 3 yields
![]() |
(3) |
Now repeatedly bump the base and subtract 1,
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
etc.
Starting this procedure at an integer gives the Goodstein sequence
. Amazingly, despite the apparent rapid increase in the terms of the sequence, Goodstein's theorem states that
is 0 for any
and any sufficiently large
. Even more amazingly, Paris and Kirby showed in 1982 that Goodstein's theorem is not provable in ordinary Peano arithmetic (Borwein and Bailey 2003, p. 35).
REFERENCES:
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 34-35, 2003.
Goodstein, R. L. "On the Restricted Ordinal Theorem." J. Symb. Logic 9, 33-41, 1944.
Henle, J. M. An Outline of Set Theory. New York: Springer-Verlag, 1986.
Simpson, S. G. "Unprovable Theorems and Fast-Growing Functions." Contemp. Math. 65, 359-394, 1987.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|