Read More
Date: 19-9-2020
821
Date: 28-1-2021
1841
Date: 14-9-2020
816
|
The Kronecker symbol is an extension of the Jacobi symbol to all integers. It is variously written as or (Cohn 1980; Weiss 1998, p. 236) or (Dickson 2005). The Kronecker symbol can be computed using the normal rules for the Jacobi symbol
(1) |
|||
(2) |
|||
(3) |
plus additional rules for ,
(4) |
and . The definition for is variously written as
(5) |
or
(6) |
(Cohn 1980). Cohn's form "undefines" for singly even numbers and , probably because no other values are needed in applications of the symbol involving the binary quadratic form discriminants of quadratic fields, where and always satisfies .
The Kronecker symbol is implemented in the Wolfram Language as KroneckerSymbol[n, m].
The Kronecker symbol is a real number theoretic character modulo , and is, in fact, essentially the only type of real primitive character (Ayoub 1963).
The illustration above and table below summarize for , 2, ... and small .
OEIS | period | ||
A109017 | 24 | 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, , 0, 0, 0, , 0, , 0, ... | |
0 | 1, , 1, 1, 0, , 1, , 1, 0, , 1, , , 0, 1, , , , 0, ... | ||
4 | 1, 0, , 0, 1, 0, , 0, 1, 0, , 0, 1, 0, , 0, 1, 0, , 0, ... | ||
3 | 1, , 0, 1, , 0, 1, , 0, 1, , 0, 1, , 0, 1, , 0, 1, , ... | ||
8 | 1, 0, 1, 0, , 0, , 0, 1, 0, 1, 0, , 0, , 0, 1, 0, 1, 0, ... | ||
A034947 | 1, 1, , 1, 1, , , 1, 1, 1, , , 1, , , 1, 1, ... | ||
0 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | ||
1 | 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... | |
2 | A091337 | 8 | 1, 0, , 0, , 0, 1, 0, 1, 0, , 0, , 0, 1, ... |
3 | A091338 | 1, , 0, 1, , 0, , , 0, 1, 1, 0, 1, 1, 0, ... | |
4 | A000035 | 2 | 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... |
5 | A080891 | 5 | 1, , , 1, 0, 1, , , 1, 0, 1, , , 1, 0, ... |
6 | 24 | 1, 0, 0, 0, 1, 0, , 0, 0, 0, , 0, , 0, 0, 0, , 0, 1, 0, ... |
For values of corresponding to primitive Dirichlet -series , the period of equals . For , , ..., the periods of are 0, 8, 3, 4, 0, 24, 7, 8, 0, 40, 11, 6, ... (OEIS A117888) and for , 2, ... they are 1, 8, 0, 2, 5, 24, 0, 8, 3, 40, 0, 12, ... (OEIS A117889). Here, 0 indicates that the sequence is not periodic.
REFERENCES:
Ayoub, R. G. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963.
Cohn, H. Advanced Number Theory. New York: Dover, p. 35, 1980.
Dickson, L. E. "Kronecker's Symbol." §48 in Introduction to the Theory of Numbers. New York: Dover, p. 77, 1957.
Sloane, N. J. A. Sequences A000035/M0001, A034947, A080891, A091337, A091338, A109017, A117888, and A117889 in "The On-Line Encyclopedia of Integer Sequences."
Weiss, E. Algebraic Number Theory. New York: Dover, 1998.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|