Read More
Date: 30-1-2021
![]()
Date: 28-8-2020
![]()
Date: 1-11-2020
![]() |
Ramanujan's Dirichlet L-series is defined as
![]() |
(1) |
where is the tau function. Note that the notation
is sometimes used instead of
(Hardy 1999, p. 164).
has properties analogous to the Riemann zeta function, and is implemented as RamanujanTauL[s].
Ramanujan conjectured that all nontrivial zeros of lie on the line
.
satisfies the functional equation
![]() |
(2) |
(Hardy 1999, p. 173) and has the Euler product representation
![]() |
(3) |
for (since
) (Apostol 1997, p. 137; Hardy 1999, p. 164).
can be split up into
![]() |
(4) |
where
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
The functions , and
are returned by the Wolfram Language commands RamanujanTauTheta[t] and RamanujanTauZ[t], respectively.
Ramanujan's tau -function
is a real function for real
and is analogous to the Riemann-Siegel function
. The number of zeros in the critical strip from
to
is given by
![]() |
(7) |
where is the Ramanujan theta function. Ramanujan conjectured that the nontrivial zeros of the function are all real.
Ramanujan's function is defined by
![]() |
(8) |
REFERENCES:
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, 1997.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Keiper, J. "On the Zeros of the Ramanujan -Dirichlet Series in the Critical Strip." Math. Comput. 65, 1613-1619, 1996.
Spira, R. "Calculation of the Ramanujan Tau-Dirichlet Series." Math. Comput. 27, 379-385, 1973.
Yoshida, H. "On Calculations of Zeros of L-Functions Related with Ramanujan's Discriminant Function on the Critical Line." J. Ramanujan Math. Soc. 3, 87-95, 1988.
|
|
حقن الذهب في العين.. تقنية جديدة للحفاظ على البصر ؟!
|
|
|
|
|
علي بابا تطلق نماذج "Qwen" الجديدة في أحدث اختراق صيني لمجال الذكاء الاصطناعي مفتوح المصدر
|
|
|
|
|
العتبة العباسية المقدسة تستذكر سيرة السيدة المعصومة (عليها السلام) وسعة علمها ومكانتها
|
|
|