Read More
Date: 23-2-2020
1909
Date: 22-11-2019
2329
Date: 20-10-2019
1008
|
A Poulet number is a Fermat pseudoprime to base 2, denoted psp(2), i.e., a composite number such that
The first few Poulet numbers are 341, 561, 645, 1105, 1387, ... (OEIS A001567).
Pomerance et al. (1980) computed all Poulet numbers less than . The numbers less than , , ..., are 0, 3, 22, 78, 245, ... (OEIS A055550).
Pomerance has shown that the number of Poulet numbers less than for sufficiently large satisfy
(Guy 1994).
A Poulet number all of whose divisors satisfy is called a super-Poulet number. There are an infinite number of Poulet numbers which are not super-Poulet numbers. Shanks (1993) calls any integer satisfying (i.e., not limited to odd composite numbers) a Fermatian.
REFERENCES:
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 28-29, 1994.
Pinch, R. G. E. "The Pseudoprimes Up to ." ftp://ftp.dpmms.cam.ac.uk/pub/PSP/.
Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. "The Pseudoprimes to ." Math. Comput. 35, 1003-1026, 1980. http://mpqs.free.fr/ThePseudoprimesTo25e9.pdf.
Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 115-117, 1993.
Sloane, N. J. A. Sequences A001567/M5441 and A055550 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
قسم الشؤون الفكرية يصدر كتاب الفلسفة الغربية برؤية الشيخ مرتضى مطهري
|
|
|