Read More
Date: 3-5-2021
2103
Date: 3-4-2021
2074
Date: 13-4-2021
1404
|
Let and be sets. Conditional probability requires that
(1) |
where denotes intersection ("and"), and also that
(2) |
Therefore,
(3) |
Now, let
(4) |
so is an event in and for , then
(5) |
(6) |
But this can be written
(7) |
so
(8) |
(Papoulis 1984, pp. 38-39).
REFERENCES:
Papoulis, A. "Bayes' Theorem in Statistics" and "Bayes' Theorem in Statistics (Reexamined)." §3-5 and 4-4 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 38-39, 78-81, and 112-114, 1984.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 810, 1992.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|