Read More
Date: 2-5-2021
1936
Date: 11-3-2021
1936
Date: 19-4-2021
1206
|
The expected number of real zeros of a random polynomial of degree if the coefficients are independent and distributed normally is given by
(1) |
|||
(2) |
(Kac 1943, Edelman and Kostlan 1995). Another form of the equation is given by
(3) |
(Kostlan 1993, Edelman and Kostlan 1995). The plots above show the integrand (left) and numerical values of (red curve in right plot) for small . The first few values are 1, 1.29702, 1.49276, 1.64049, 1.7596, 1.85955, ....
As ,
(4) |
where
(5) |
|||
(6) |
(OEIS A093601; top curve in right plot above). The initial term was derived by Kac (1943).
REFERENCES:
Edelman, A. and Kostlan, E. "How Many Zeros of a Random Polynomial are Real?" Bull. Amer. Math. Soc. 32, 1-37, 1995.
Kac, M. "On the Average Number of Real Roots of a Random Algebraic Equation." Bull. Amer. Math. Soc. 49, 314-320, 1943.
Kac, M. "A Correction to 'On the Average Number of Real Roots of a Random Algebraic Equation.' " Bull. Amer. Math. Soc. 49, 938, 1943.
Kostan, E. "On the Distribution of Roots in a Random Polynomial." Ch. 38 in From Topology to Computation: Proceedings of the Smalefest (Ed. M. W. Hirsch, J. E. Marsden, and M. Shub). New York: Springer-Verlag, pp. 419-431, 1993.
Sloane, N. J. A. Sequence A093601 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|