تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Run
المؤلف:
Bloom, D. M.
المصدر:
"Probabilities of Clumps in a Binary Sequence (and How to Evaluate Them Without Knowing a Lot)." Math. Mag. 69
الجزء والصفحة:
...
31-3-2021
2918
Run
A run is a sequence of more than one consecutive identical outcomes, also known as a clump.
Let be the probability that a run of
or more consecutive heads appears in
independent tosses of a coin (i.e.,
Bernoulli trials). This is equivalent to repeated picking from an urn containing two distinguishable objects with replacement after each pick. Let the probability of obtaining a head be
. Then there is a beautiful formula for
given in terms of the coefficients of the generating function
![]() |
(1) |
(Feller 1968, p. 300). Then
![]() |
(2) |
The following table gives the triangle of numbers for
, 2, ... and
, 2, ...,
(OEIS A050227).
Sloane | A000225 | A008466 | A050231 | A050233 | ||||
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 7 | 3 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 15 | 8 | 3 | 1 | 0 | 0 | 0 | 0 |
5 | 31 | 19 | 8 | 3 | 1 | 0 | 0 | 0 |
6 | 63 | 43 | 20 | 8 | 3 | 1 | 0 | 0 |
7 | 127 | 94 | 47 | 20 | 8 | 3 | 1 | 0 |
8 | 255 | 201 | 107 | 48 | 20 | 8 | 3 | 1 |
The special case gives the sequence
![]() |
(3) |
where is a Fibonacci number. Similarly, the probability that no
consecutive tails will occur in
tosses is given by
, where
is a Fibonacci k-step number.
Feller (1968, pp. 278-279) proved that for ,
![]() |
(4) |
where
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(OEIS A086253) is the positive root of the above polynomial and
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(OEIS A086254) is the positive root of the above polynomial. The corresponding constants for a run of heads are
, the smallest positive root of
![]() |
(10) |
and
![]() |
(11) |
These are modified for unfair coins with and
to
, the smallest positive root of
![]() |
(12) |
and
![]() |
(13) |
(Feller 1968, pp. 322-325).
Given Bernoulli trials with a probability of success (heads)
, the expected number of tails is
, so the expected number of tail runs
is
. Continuing,
![]() |
(14) |
is the expected number of runs . The longest expected run is therefore given by
![]() |
(15) |
(Gordon et al. 1986, Schilling 1990). Given 0s and
1s, the number of possible arrangements with
runs is
(16) |
for an integer, where
is a binomial coefficient (Johnson and Kotz 1968, p. 268). Then
![]() |
(17) |
Now instead consider picking of objects without replacement from a collection of
containing
indistinguishable objects of one type and
indistinguishable objects of another. Let
denote the number of permutations of these objects in which no
-run occurs. For example, there are 6 permutations of two objects of type
and two of type
. Of these,
,
,
, and
contain runs of length two, so
. In general, the probability that an
-run does occur is given by
![]() |
(18) |
where is a binomial coefficient. Bloom (1996) gives the following recurrence sequence for
,
![]() |
(19) |
where for
or
negative and
(20) |
Another recurrence which has only a fixed number of terms is given by
![]() |
(21) |
where
(22) |
(Goulden and Jackson 1983, Bloom 1996).
These formulas can be used to calculate the probability of obtaining a run of cards of the same color in a deck of 52 cards. For
, 2, ..., this yields the sequence 1, 247959266474051/247959266474052, ... (OEIS A086439 and A086440). Normalizing by multiplying by
gives 495918532948104, 495918532948102, 495891608417946, 483007233529142, ... (OEIS A086438). The result
![]() |
(23) |
disproves the assertion of Gardner (1982) that "there will almost always be a clump of six or seven cards of the same color" in a normal deck of cards.
Bloom (1996) gives the expected number of noncontiguous -runs (i.e., split the sequence into maximal clumps of the same value and count the number of such clumps of length
) in a sequence of
0s and
1s as
![]() |
(24) |
where is the falling factorial. For
,
has an approximately normal distribution with mean and variance
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
REFERENCES:
Bloom, D. M. "Probabilities of Clumps in a Binary Sequence (and How to Evaluate Them Without Knowing a Lot)." Math. Mag. 69, 366-372, 1996.
Feller, W. An Introduction to Probability Theory and Its Application, Vol. 1, 3rd ed. New York: Wiley, 1968.
Finch, S. R. "Feller's Coin Tossing Constants." §5.11 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 339-342, 2003.
Gardner, M. Aha! Gotcha: Paradoxes to Puzzle and Delight. New York: W. H. Freeman, p. 124, 1982.
Godbole, A. P. "On Hypergeometric and Related Distributions of Order ." Commun. Stat.: Th. and Meth. 19, 1291-1301, 1990.
Godbole, A. P. and Papastavridis, G. (Eds.). Runs and Patterns in Probability: Selected Papers. New York: Kluwer, 1994.
Gordon, L.; Schilling, M. F.; and Waterman, M. S. "An Extreme Value Theory for Long Head Runs." Prob. Th. and Related Fields 72, 279-287, 1986.
Goulden, I. P. and Jackson, D. M. Combinatorial Enumeration. New York: Wiley, 1983.
Johnson, N. and Kotz, S. Discrete Distributions. New York: Wiley, 1968.
Mood, A. M. "The Distribution Theory of Runs." Ann. Math. Statistics 11, 367-392, 1940.
Philippou, A. N. and Makri, F. S. "Successes, Runs, and Longest Runs." Stat. Prob. Let. 4, 211-215, 1986.
Schilling, M. F. "The Longest Run of Heads." Coll. Math. J. 21, 196-207, 1990.
Schuster, E. F. In Runs and Patterns in Probability: Selected Papers (Ed. A. P. Godbole and S. Papastavridis). Boston, MA: Kluwer, pp. 91-111, 1994.
Sloane, N. J. A. Sequences A000225/M2655, A008466, A050227, A050231, A050232, A050233, A086253, A086254, A086438, A086439, and A086440 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
