Read More
Date: 15-3-2021
1145
Date: 27-3-2021
3348
Date: 4-4-2021
1649
|
Let a distribution to be approximated be the distribution of standardized sums
(1) |
In the Charlier series, take the component random variables identically distributed with mean , variance , and higher cumulants for . Also, take the developing function as the standard normal distribution function , so we have
(2) |
|||
(3) |
|||
(4) |
Then the Edgeworth series is obtained by collecting terms to obtain the asymptotic expansion of the characteristic function of the form
(5) |
where is a polynomial of degree with coefficients depending on the cumulants of orders 3 to . If the powers of are interpreted as derivatives, then the distribution function expansion is given by
(6) |
(Wallace 1958). The first few terms of this expansion are then given by
(7) |
Cramér (1928) proved that this series is uniformly valid in .
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 935, 1972.
Charlier, C. V. L. "Über dir Darstellung willkürlicher Funktionen." Ark. Mat. Astr. och Fys. 2, No. 20, 1-35, 1906.
Cramér, H. "On the Composition of Elementary Errors." Skand. Aktuarietidskr. 11, 13-74 and 141-180, 1928.
Edgeworth, F. Y. "The Law of Error." Cambridge Philos. Soc. 20, 36-66 and 113-141, 1905.
Esseen, C. G. "Fourier Analysis of Distribution Functions." Acta Math. 77, 1-125, 1945.
Hsu, P. L. "The Approximate Distribution of the Mean and Variance of a Sample of Independent Variables." Ann. Math. Stat. 16, 1-29, 1945.
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 107-108, 1951.
Wallace, D. L. "Asymptotic Approximations to Distributions." Ann. Math. Stat. 29, 635-654, 1958.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|