Read More
Date: 16-4-2021
1722
Date: 2-5-2021
1652
Date: 22-2-2021
1448
|
The chi distribution with degrees of freedom is the distribution followed by the square root of a chi-squared random variable. For , the distribution is a half-normal distribution with . For , it is a Rayleigh distribution with . The chi distribution is implemented in the Wolfram Language as ChiDistribution[n].
The probability density function and distribution function for this distribution are
(1) |
|||
(2) |
where is a regularized gamma function.
The th raw moment is
(3) |
(Johnson et al. 1994, p. 421; Evans et al. 2000, p. 57; typo corrected), giving the first few as
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
The mean, variance, skewness, and kurtosis excess are given by
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
REFERENCES:
Evans, M.; Hastings, N.; and Peacock, B. "Chi Distribution." §8.3 in Statistical Distributions, 3rd ed. New York: Wiley, p. 57, 2000.
Johnson, N.; Kotz, S.; and Balakrishnan, N. Continuous Univariate Distributions, Vol. 1, 2nd ed. Boston, MA: Houghton Mifflin, 1994.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|