تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Binomial Distribution
المؤلف:
Beyer, W. H.
المصدر:
CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press
الجزء والصفحة:
...
17-4-2021
3658
Binomial Distribution
The binomial distribution gives the discrete probability distribution of obtaining exactly
successes out of
Bernoulli trials (where the result of each Bernoulli trial is true with probability
and false with probability
). The binomial distribution is therefore given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is a binomial coefficient. The above plot shows the distribution of
successes out of
trials with
.
The binomial distribution is implemented in the Wolfram Language as BinomialDistribution[n, p].
The probability of obtaining more successes than the observed in a binomial distribution is
![]() |
(3) |
where
![]() |
(4) |
is the beta function, and
is the incomplete beta function.
The characteristic function for the binomial distribution is
![]() |
(5) |
(Papoulis 1984, p. 154). The moment-generating function for the distribution is
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
The mean is
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
The moments about 0 are
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
so the moments about the mean are
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
The skewness and kurtosis excess are
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
The first cumulant is
![]() |
(26) |
and subsequent cumulants are given by the recurrence relation
![]() |
(27) |
The mean deviation is given by
![]() |
(28) |
For the special case , this is equal to
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
(30) |
where is a double factorial. For
, 2, ..., the first few values are therefore 1/2, 1/2, 3/4, 3/4, 15/16, 15/16, ... (OEIS A086116 and A086117). The general case is given by
![]() |
(31) |
Steinhaus (1999, pp. 25-28) considers the expected number of squares containing a given number of grains
on board of size
after random distribution of
of grains,
![]() |
(32) |
Taking gives the results summarized in the following table.
![]() |
![]() |
0 | 23.3591 |
1 | 23.7299 |
2 | 11.8650 |
3 | 3.89221 |
4 | 0.942162 |
5 | 0.179459 |
6 | 0.0280109 |
7 | 0.0036840 |
8 | ![]() |
9 | ![]() |
10 | ![]() |
An approximation to the binomial distribution for large can be obtained by expanding about the value
where
is a maximum, i.e., where
. Since the logarithm function is monotonic, we can instead choose to expand the logarithm. Let
, then
![]() |
(33) |
where
![]() |
(34) |
But we are expanding about the maximum, so, by definition,
![]() |
(35) |
This also means that is negative, so we can write
. Now, taking the logarithm of (◇) gives
![]() |
(36) |
For large and
we can use Stirling's approximation
![]() |
(37) |
so
![]() |
![]() |
![]() |
(38) |
![]() |
![]() |
![]() |
(39) |
![]() |
![]() |
![]() |
(40) |
![]() |
![]() |
![]() |
(41) |
![]() |
![]() |
![]() |
(42) |
and
![]() |
(43) |
To find , set this expression to 0 and solve for
,
![]() |
(44) |
![]() |
(45) |
![]() |
(46) |
![]() |
(47) |
since . We can now find the terms in the expansion
![]() |
![]() |
![]() |
(48) |
![]() |
![]() |
![]() |
(49) |
![]() |
![]() |
![]() |
(50) |
![]() |
![]() |
![]() |
(51) |
![]() |
![]() |
![]() |
(52) |
![]() |
![]() |
![]() |
(53) |
![]() |
![]() |
![]() |
(54) |
![]() |
![]() |
![]() |
(55) |
![]() |
![]() |
![]() |
(56) |
![]() |
![]() |
![]() |
(57) |
![]() |
![]() |
![]() |
(58) |
![]() |
![]() |
![]() |
(59) |
Now, treating the distribution as continuous,
![]() |
(60) |
Since each term is of order smaller than the previous, we can ignore terms higher than
, so
![]() |
(61) |
The probability must be normalized, so
![]() |
(62) |
and
![]() |
![]() |
![]() |
(63) |
![]() |
![]() |
![]() |
(64) |
Defining ,
![]() |
(65) |
which is a normal distribution. The binomial distribution is therefore approximated by a normal distribution for any fixed (even if
is small) as
is taken to infinity.
If and
in such a way that
, then the binomial distribution converges to the Poisson distribution with mean
.
Let and
be independent binomial random variables characterized by parameters
and
. The conditional probability of
given that
is
![]() |
(66) |
Note that this is a hypergeometric distribution.
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 531, 1987.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 102-103, 1984.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 219-223, 1992.
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 108-109, 1992.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
