Read More
Date: 6-11-2021
1000
Date: 5-10-2021
1540
Date: 15-9-2021
1095
|
Overview of The Fasted State
Fasting begins if no food is ingested after the absorptive period. It may result from an inability to obtain food, the desire to lose weight rapidly, or clinical situations in which an individual cannot eat (for example, because of trauma, surgery, cancer, or burns). In the absence of food, plasma levels of glucose, amino acids, and TAG fall, triggering a decline in insulin secretion and an increase in glucagon, epinephrine, and cortisol secretion. The decreased insulin/counterregulatory hormone ratio and the decreased availability of circulating substrates make the postabsorptive period of nutrient deprivation a catabolic period characterized by degradation of TAG, glycogen, and protein.
This sets into motion an exchange of substrates among the liver, adipose tissue, skeletal muscle, and brain that is guided by two priorities: 1) the need to maintain adequate plasma levels of glucose to sustain energy metabolism in the brain, red blood cells, and other glucose-requiring tissues and 2) the need to mobilize FA from TAG in WAT for the synthesis and release of ketone bodies by the liver to supply energy to other tissues and spare body protein. As a result, blood glucose levels are maintained within a narrow range in fasting, while FA and ketone body levels increase. [Note: Maintaining glucose requires that the substrates for gluconeogenesis (such as pyruvate, alanine, and glycerol) be available.]
A. Fuel stores
The metabolic fuels available in a normal 70-kg man at the beginning of a fast are shown in Figure 24.10. Observe the enormous caloric stores available in the form of TAG compared with those contained in glycogen. [Note: Although protein is listed as an energy source, each protein also has a function unrelated to energy metabolism (for example, as a structural component of the body or as an enzyme). Therefore, only about one third of the body’s protein can be used for energy production without fatally compromising vital functions.]
Figure 1: Metabolic fuels present in a 70-kg man at the beginning of a fast. The fat stores are sufficient to meet energy needs for ~80 days.
B. Enzymic changes
In fasting (as in the well-fed state), the flow of intermediates through the pathways of energy metabolism is controlled by four mechanisms: 1) the availability of substrates, 2) allosteric regulation of enzymes, 3) covalent modification of enzymes, and 4) induction-repression of enzyme synthesis.
The metabolic changes observed in fasting are generally opposite those described for the absorptive state . For example, although most of the enzymes regulated by covalent modification are dephosphorylated and active in the well-fed state, they are phosphorylated and inactive in the fasted state. Three exceptions are glycogen phosphorylase , glycogen phosphorylase kinase , and HSL , which are active in their phosphorylated states. In fasting, substrates are not provided by the diet but are available from the breakdown of stores and/or tissues, such as glycogenolysis with release of glucose from the liver, lipolysis with release of FA and glycerol from TAG in adipose tissue, and proteolysis with release of amino acids from muscle.
Recognition that the changes in fasting are the reciprocal of those in the fed state is helpful in understanding the ebb and flow of metabolism.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|