Read More
Date: 4-1-2022
1995
Date: 26-12-2021
1057
Date: 13-1-2022
1172
|
Let denote the cardinal number of set , then it follows immediately that
(1) |
where denotes union, and denotes intersection. The more general statement
(2) |
also holds, and is known as Boole's inequality or one of the Bonferroni inequalities.
This formula can be generalized in the following beautiful manner. Let be a p-system of consisting of sets , ..., , then
(3) |
where the sums are taken over k-subsets of . This formula holds for infinite sets as well as finite sets (Comtet 1974, p. 177).
The principle of inclusion-exclusion was used by Nicholas Bernoulli to solve the recontres problem of finding the number of derangements (Bhatnagar 1995, p. 8).
For example, for the three subsets , , and of , the following table summarizes the terms appearing the sum.
# | term | set | length |
1 | 2, 3, 7, 9, 10 | 5 | |
1, 2, 3, 9 | 4 | ||
2, 4, 9, 10 | 4 | ||
2 | 2, 3, 9 | 3 | |
2, 9, 10 | 3 | ||
2, 9 | 2 | ||
3 | 2, 9 | 2 |
is therefore equal to , corresponding to the seven elements .
REFERENCES:
Andrews, G. E. Number Theory. Philadelphia, PA: Saunders, pp. 139-140, 1971.
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., p. 60, 1986.
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and Their U(n) Extensions. Ph.D. thesis. Ohio State University, 1995.
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 176-177, 1974.
da Silva. "Proprietades geraes." J. de l'Ecole Polytechnique, cah. 30.
de Quesada, C. A. "Daniel Augusto da Silva e la theoria delle congruenze binomie." Ann. Sci. Acad. Polytech. Porto, Coīmbra 4, 166-192, 1909.
Dohmen, K. Improved Bonferroni Inequalities with Applications: Inequalities and Identities of Inclusion-Exclusion Type. Berlin: Springer-Verlag, 2003.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 66, 2003.
Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, pp. 178-179, 1997.
Sylvester, J. "Note sur la théorème de Legendre." Comptes Rendus Acad. Sci. Paris 96, 463-465, 1883.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|