المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

أثر الإعتقاد بالمعاد على حياة البشر
6-4-2016
الإتزان العابر Transient Equilibrium
27-4-2016
الصبر
27-1-2021
فسفاتيديل الإينوزيتول هو طليعة للمراسيل الثانية
25-7-2021
النظام البيئي Ecosystem
2023-10-09
[الجود و حسن الخلق في علي]
22-10-2015

Tight Lattice  
  
1358   02:17 صباحاً   date: 2-1-2022
Author : Grätzer, G
Book or Source : General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.
Page and Part : ...


Read More
Date: 2-1-2022 1147
Date: 11-1-2022 1240
Date: 14-2-2017 1241

Tight Lattice

Let L be a nontrivial bounded lattice (or a complemented lattice, etc.). Then L is a tight lattice if every proper tolerance rho of L satisfies

 (0,a) in rho=>a=0, and dually (b,1) in rho=>b=1.

Tight lattices play an important role in the study of congruence lattices on finite algebras. One can show that a finite lattice L is tight if and only if it is 0,1-simple and every strictly increasing meet endomorphism of L is constant. One can also show that a finite lattice L is tight if and only if its only connected tolerance is the all relation, {(a,b)|a,b in L}.


REFERENCES:

Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.

Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.

Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.