المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
العمل الجيومورفي للثلاجة
2025-01-11
مظاهر الارساب الريحي
2025-01-11
المظاهر الأرضية للرياح
2025-01-11
Acute respiratory distress syndrome (ARDS)
2025-01-11
المظاهر الكارستية الناتجة عن عمليات البناء (الترسيب)
2025-01-11
Giant cell (temporal) arteritis
2025-01-11

انتاج الازواج (تحول الطاقة الى مادة )
17-7-2016
ادخلي الى عالم ابنك
8-1-2016
Paramagnetism
23-2-2017
تداخل interference
6-6-2017
توهين أشعة Attenuation of γ - rays :γ
12-12-2021
أساليب اصلاح الطفل
3/9/2022

Guy,s Conjecture  
  
1418   01:24 صباحاً   date: 3-4-2022
Author : Brodsky, A.; Durocher, S.; and Gethner, E
Book or Source : "The Rectilinear Crossing Number of K_(10) Is 62." 22 Sep 2000.
Page and Part : ...


Read More
Date: 6-8-2016 1680
Date: 19-5-2022 1413
Date: 6-8-2016 1937

Guy's Conjecture

Guy's conjecture, which has not yet been proven or disproven, states that the graph crossing number for a complete graph K_n is

 Z(n)=1/4|_n/2_||_(n-1)/2_||_(n-2)/2_||_(n-3)/2_|,

(1)

where |_x_| is the floor function, which can be rewritten

 Z(n)={1/(64)n(n-2)^2(n-4)   for n even; 1/(64)(n-1)^2(n-3)^2   for n odd.

(2)

The values for n=1, 2, ... are then given by 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, 100, 150, 225, 315, 441, 588, ... (OEIS A000241).

Guy (1972) proved the conjecture for n<=10, a result extended to n<=12 by Pan and Richter (2007).

It is known that

 0.8594Z(n)<=nu(K_n)<=Z(n)

(3)

(Richter and Thomassen 1997, de Klerk et al. 2007, Pan and Richter 2007).


REFERENCES

Brodsky, A.; Durocher, S.; and Gethner, E. "The Rectilinear Crossing Number of K_(10) Is 62." 22 Sep 2000.

 http://arxiv.org/abs/cs/0009023.de Klerk, E.; Pasechnik, D. V.; and Schrijver, A. "Reduction of Symmetric Semidefinite Programs Using the Regular *-Representation." Math Program. 109, 613-624, 2007

.de Klerk, E.; Maharry, J.; Pasechnik, D. V.; Richter, R. B.; Salazar, G. "Improved Bounds for the Crossing Numbers of K_(m,n) and K_n." 2004.

 https://arxiv.org/pdf/math/0404142.pdf.Guy, R. K. "The Crossing Number of the Complete Graph." Bull. Malayan Math. Soc. 7, 68-72, 1960.

Guy, R. K. "Crossing Numbers of Graphs." In Graph Theory and Applications: Proceedings of the Conference at Western Michigan University, Kalamazoo, Mich., May 10-13, 1972 (

Ed. Y. Alavi, D. R. Lick, and A. T. White). New York: Springer-Verlag, pp. 111-124, 1972.

Pan, S. and Richter, R. B. "The Crossing Number of K_(11) is 100." J. Graph Th. 56, 128-134, 2007.

Sloane, N. J. A. Sequence A000241/M2772 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.