المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

labio-dental (adj./n.)
2023-09-29
حجية الدفاتر التجارية في الإثبات ضد مصلحة التاجر
31-8-2020
التنظيم الرسمي والتنظيم غير الرسمي
4-5-2016
Catalytic Triad
19-12-2015
فدية حلق الرأس
2024-07-03
طرق نقل فايروسات النبات (نقل الفايروسات الميكانيكي)
14-8-2017

Callippus of Cyzicus  
  
745   04:38 مساءاً   date: 18-10-2015
Author : Calendar
Book or Source : Encyclopaedia Britannica
Page and Part : ...


Read More
Date: 20-10-2015 1017
Date: 18-10-2015 1858
Date: 19-10-2015 634

Born: about 370 BC in Cyzicus, Asia Minor (now Turkey)
Died: about 310 BC

 

The dates given for the birth and death of Callippus of Cyzicus are guesses but he is known to have been working with Aristotle in Athens starting in 330 BC.

We know that Callippus was a student in the School of Eudoxus. We also know that he made his astronomical observations on the shores of the Hellespont, which can be deduced from the observations themselves. Simplicius writes in his commentary on De caelo by Aristotle (see for example [1]):-

Callippus of Cyzicus, having studied with Polemarchus, Eudoxus' pupil, following him to Athens dwelt with Aristotle, correcting and completing, with Aristotle's help, the discoveries of Eudoxus.

Callippus made accurate determinations of the lengths of the seasons and constructed a 76 year cycle comprising 940 months to harmonise the solar and lunar years which was adopted in 330 BC and used by all later astronomers. This calendar of Callippus is examined in detail by van der Waerden in [6]. Ptolemy gave us an accurate date for the beginning of this cycle in 330 BC in the Almagest saying that year 50 of the first cycle coincided with the 44th year following the death of Alexander.

The Callippic period is based on the Metonic period devised by Meton (born about 460 BC). Meton's observations were made in Athens in 432 BC but he gave a length for the year which was 1/76 of a day too long. The relation between Callippus's period and that of Meton are explained in [2] as follows:-

Callippus of Cyzicus (c. 370-300 BC) was perhaps the foremost astronomer of his day. He formed what has been called the Callippic period, essentially a cycle of four Metonic periods. It was more accurate than the original Metonic cycle and made use of the fact that 365.25 days is a more precise value for the tropical year than 365 days. The Callippic period consisted of 4 × 235, or 940 lunar months, but its distribution of hollow and full months was different from Meton's. Instead of having totals of 440 hollow and 500 full months, Callippus adopted 441 hollow and 499 full, thus reducing the length of four Metonic cycles by one day. The total days involved therefore became (441 × 29) + (499 × 30), or 27,759 and 27,759 ÷ (19 × 4) gives 365.25 days exactly. Thus the Callippic cycle fitted 940 lunar months precisely to 76 tropical years of 365.25 days.

Callippus introduced a system of 34 spheres to explain the motions of the heavenly bodies. The Sun, Moon, Mercury, Venus and Mars each had five spheres while Jupiter and Saturn had four and the stars had one. This addition of six spheres over the system proposed by Eudoxus increased the accuracy of the theory while preserving the belief that the heavenly bodies had to possess motion based on the circle since that was the 'perfect' path. Heath writes [4]:-

Callipus tried to make the system of concentric spheres suit the phenomena more exactly by adding other spheres; he left the number of spheres at four in the case of Jupiter and Saturn, but added one each to the other planets and two each in the case of the sun and the moon ... . This would substitute for the hippopede [see the Eudoxus article] a still more complicated elongated figure ...

Other contributions of Callippus to mathematical astronomy included his observation of the inequality in the lengths of the seasons. He accounted for this in his model by making the velocity of the Sun vary through the year and this was achieved with the two extra spheres described above.

The Callippic period contributed to the accuracy of later astronomical theories. Kieffer writes in [1]:-

Although the system of concentric spheres gave way to epicycles and eccentrics, Callippus's period became the standard for correlating observations accurately over many centuries, and thus contributed to the accuracy of later astronomical theories.


Books:

  1. Calendar, Encyclopaedia Britannica.
  2. T L Heath, Aristarchus of Samos (Oxford, 1913).
  3. T L Heath, A History of Greek Mathematics (2 Vols.) (Oxford, 1921).
  4. O Neugebauer, A history of ancient mathematical astronomy (New York, 1975).

Articles:

5.B L van der Waerden, Greek astronomical calendars. II. Callippos and his calendar, Arch. Hist. Exact Sci. 29 (2) (1984), 115-124.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.