أقرأ أيضاً
التاريخ: 26-3-2017
2332
التاريخ: 27-3-2017
1999
التاريخ: 1-12-2021
2149
التاريخ: 17-4-2017
1744
|
The first thing to do when one of the symmetries is lost is to immediately go back over the list of known or assumed symmetries and ask whether any of the others are lost. Now we did not mention one operation on our list, which must necessarily be questioned, and that is the relation between matter and antimatter. Dirac predicted that in addition to electrons there must be another particle, called the positron (discovered at Caltech by Anderson), that is necessarily related to the electron. All the properties of these two particles obey certain rules of correspondence: the energies are equal; the masses are equal; the charges are reversed; but, more important than anything, the two of them, when they come together, can annihilate each other and liberate their entire mass in the form of energy, say γ-rays. The positron is called an antiparticle to the electron, and these are the characteristics of a particle and its antiparticle. It was clear from Dirac’s argument that all the rest of the particles in the world should also have corresponding antiparticles. For instance, for the proton there should be an antiproton, which is now symbolized by a . The would have a negative electrical charge and the same mass as a proton, and so on. The most important feature, however, is that a proton and an antiproton coming together can annihilate each other. The reason we emphasize this is that people do not understand it when we say there is a neutron and also an antineutron, because they say, “A neutron is neutral, so how can it have the opposite charge?” The rule of the “anti” is not just that it has the opposite charge, it has a certain set of properties, the whole lot of which are opposite. The antineutron is distinguished from the neutron in this way: if we bring two neutrons together, they just stay as two neutrons, but if we bring a neutron and an antineutron together, they annihilate each other with a great explosion of energy being liberated, with various π-mesons, γ-rays, and whatnot.
Now if we have antineutrons, antiprotons, and antielectrons, we can make antiatoms, in principle. They have not been made yet, but it is possible in principle. For instance, a hydrogen atom has a proton in the center with an electron going around outside. Now imagine that somewhere we can make an antiproton with a positron going around, would it go around? Well, first of all, the antiproton is electrically negative and the antielectron is electrically positive, so they attract each other in a corresponding manner—the masses are all the same; everything is the same. It is one of the principles of the symmetry of physics, the equations seem to show, that if a clock, say, were made of matter on one hand, and then we made the same clock of antimatter, it would run in this way. (Of course, if we put the clocks together, they would annihilate each other, but that is different.)
An immediate question then arises. We can build, out of matter, two clocks, one which is “left-hand” and one which is “right-hand.” For example, we could build a clock which is not built in a simple way, but has cobalt and magnets and electron detectors which detect the presence of β-decay electrons and count them. Each time one is counted, the second hand moves over. Then the mirror clock, receiving fewer electrons, will not run at the same rate. So evidently, we can make two clocks such that the left-hand clock does not agree with the right-hand one. Let us make, out of matter, a clock which we call the standard or right-hand clock. Now let us make, also out of matter, a clock which we call the left-hand clock. We have just discovered that, in general, these two will not run the same way; prior to that famous physical discovery, it was thought that they would. Now it was also supposed that matter and antimatter were equivalent. That is, if we made an antimatter clock, right-hand, the same shape, then it would run the same as the right-hand matter clock, and if we made the same clock to the left it would run the same. In other words, in the beginning it was believed that all four of these clocks were the same; now of course we know that the right-hand and left-hand matter are not the same. Presumably, therefore, the right-handed antimatter and the left-handed antimatter are not the same.
So the obvious question is, which goes with which, if either? In other words, does the right-handed matter behave the same way as the right-handed antimatter? Or does the right-handed matter behave the same as the left-handed antimatter? β-decay experiments, using positron decay instead of electron decay, indicate that this is the interconnection: matter to the “right” works the same way as antimatter to the “left.”
Therefore, at long last, it is really true that right and left symmetry is still maintained! If we made a left-hand clock, but made it out of the other kind of matter, antimatter instead of matter, it would run in the same way. So what has happened is that instead of having two independent rules in our list of symmetries, two of these rules go together to make a new rule, which says that matter to the right is symmetrical with antimatter to the left.
So if our Martian is made of antimatter and we give him instructions to make this “right” handed model like us, it will, of course, come out the other way around. What would happen when, after much conversation back and forth, we each have taught the other to make space ships and we meet halfway in empty space? We have instructed each other on our traditions, and so forth, and the two of us come rushing out to shake hands. Well, if he puts out his left hand, watch out!
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|