أقرأ أيضاً
التاريخ: 2023-12-21
1098
التاريخ: 2023-10-26
819
التاريخ: 2023-10-29
781
التاريخ: 20-6-2016
2325
|
المعقم الجيد يجب أن يكون ساماً للكائنات الحية الدقيقة المسببة للأمراض وبتركيز أقل من الحدود الدنيا السامة للبشر والحيوانات وهنالك الكثير من المعقمات التي تُستخدم في معالجة المياه ومنها (1):
1- الأوزون O3
2- الأشعة فوق البنفسجية UV
3- بيرو كسيد الهيدروجين H2O2
4- ثنائي اوكسيد الكلورClO2
5- الكلور Cl2
1- الأوزون Ozone
الأوزون غاز عديم اللون في جميع التراكيز المعروفة في الصناعة, صيغته الكيميائية O3, ذو رائحة لاذعة تُشم عند تركيز قليل بين 0.02-0.05 ملغم/لتر, وهو شديد الذوبان في الماء وأكثر بعشرة أضعاف ذوبانية الأوكسجين , ولكنه لا ينتج بشكل نقي, وأكثر تركيز يمكن إنتاجه في خليط الأوكسجين هو %18والذي قلل أستخدامه كمادة معقمة. ينتج الأوزون عن طريق مولد خاص باستخدام قطبين وتسليط فولتية عالية بين 6000-20000 فولت تؤدي إلى إحداث قوس كهربائي محفز لجزيئات الأوكسجين لتتفكك إلى جذور حرة سرعان ما تتحد مع جزيئات الأوكسجين مكونة جزيئات الأوزون المتكونة من ثلاث ذرات أوكسجين فتكون الصيغة الجزيئية للأوزون هي O3 والمادة الخام المستخدمة لإنتاجه هي الهواء الجوي أو الأوكسجين النقي(2).
أما تأثير الأوزون O3 على الكائنات الحية الدقيقة المسببة للإمراض فهو كباقي المؤكسدات التي تحقن في الماء إذ يقوم بتعطيل خصائص جدران الخلايا من خلال أألأكسدتها مسبباً توقف نمو الخلايا الحية وشل حركتها بشكل أكثر كفاءة من الكلور والمؤكسدات الأخرى, وهو قليل التأثر بحامضية المحلول. ولكن من مساوئ أستخدام الأوزونO3 كمعقم تكمن في عدم ترك تراكيز متبقية بعد عملية التعقيم لضمان عدم تكاثر الخلايا الحية من جديد. أما تفاعلاته في الوسط المائي فهي كالأتي(3) :
O3 + H2O → HO3+ + OH-
HO3+ + H2O → 2HO2. + H+
HO2. + O3 → HO. + 2O2
HO. + HO2. → H2O + O2
2- الأشعة فوق البنفسجية Ultraviolet Radiation
الأشعة فوق البنفسجية UVهي أشعة ذات طاقة عالية توجد في الطبيعة كجزء من أشعة الشمس, وتتميز بطول موجي قصير بين 100-380 نانومتر ويتم تعريض المياه للأشعة فوق البنفسجية التي تعمل على تعطيل الكائنات الحية الدقيقة المسببة للأمراض بالإشعاع الكهرومغناطيسي, هذا الإشعاع ينتقل إلى جدران الخلايا ويقوم بتدميرها وتحطيم DNA وتعتمد قوة التعقيم على شدة الأختراق, ومن خلال تعرض كل أجزاء المحلول المائي للإشعاع. يتكون نظام الأشعة فوق البنفسجية من مصابيح زئبقية وحوافظ تستخدم في نقل التيار الكهربائي إضافة إلى ما يسمى بالمفاعل وهو الحيز الذي تخترق من خلاله الأشعة التيار المائي وهنالك أيضاً مصدر للتيار الكهربائي((4. من مزايا الأشعة فوق البنفسجية فعاليتها في تعطيل الفيروسات والابواغ والحويصلات, وعملية التعقيم بأشعة UV هي عملية فيزيائية وبالتالي تتجنب التعامل مع مواد كيميائية خطرة وليس هنالك نواتج جانبية ضارة وأستخدامها آمن للمشغل وأن زمن التلامس قليل جدا ًلا يتعدى 20-30 دقيقة, أما مساوئها قد لا تكون الجرعات المستخدمة كافية للتخلص من كل مسببات الأمراض الموجودة بالمياه , وإذا كانت عكورة المياه عالية قد لا تتمكن الأشعة من إختراق الخلايا وإتلافها , وأيضا من مساوئ التعقيم بالـ UVيتطلب إضافة مادة معقمة أخرى معها لأنها لا تترك تراكيز متبقية بعد عملية التعقيم فيكون الماء عرضة للتلوث إذا لم يُستخدم معقم آخر(5).
3- بيروكسيد الهيدروجين Hydrogen Peroxide
اكتشف بيروكسيد الهيدروجين عام 1818 من قبل Louis Jacque Thenard , وهو مركب صيغته الجزيئية H2O2, يوجد في الطبيعة بتراكيز قليلة جدا ًنتيجة تفاعلات ضوئية في الغلاف الجوي, وكذلك يوجد في الماء بتركيز قليل جدا ً. أستخدام بيروكسيد الهيدروجين في تعقيم المياه لأول مرة في الخمسينات في اوروبا الشرقية, يعمل بيروكسيد الهيدروجين في التعقيم على أطلاق الجذور الحرة سواء على شكل جذر أوكسجين حر (O.) أو جذر الهيدروكسيل الحر HO∙)) وهي عوامل مؤكسدة فائقة القوة تهاجم الملوثات وتحطمها بدون ترك آثار جانبية تذكر قياسا ًبالكلور. يشبه بيروكسيد الهيدروجين الماء بشكل كبير لذلك يذوب فيه بسهولة, تراكيزه المستخدمة في تعقيم المياه يعبر عنها بنسب مئوية تتراوح بين(35%-50%), ومن محاسن بيروكسيد الهيدروجين كمعقم انه لايترك نواتج جانبية خطرة فضلاً عن أن أستخدامه آمن في حدود التراكيز المعتادة, لكن من مساوئه أنه في حالة التركيز العالي يعد خطرا ً لذلك يستلزم الحذر والاحتياط في عملية النقل وفي النسب المستخدمة في التعقيم(6).
4- ثنائي أوكسيد الكلور ClO2 Chlorine Dioxide
ثنائي أوكسيد الكلور ClO2مركب غير ثابت لذلك يتم تصنيعه في موقع الأستخدام بأحدى الطريقتين, أما تفاعل الكلور مع كلوريت الصوديوم كما في المعادلة الاولى أو تفاعل حامض الهيدروكلوريك مع هايبوكلوريت الصوديوم كما في المعادلة الثانية(7):
Cl2+2NaClO2→2ClO2+2NaCl…….. (1)
HCl+NaOCl+2NaClO2→2ClO2+2NaCl+NaOH………. (2)
يتفاعل ثنائي أوكسيد الكلور مع الشوائب والمواد العضوية والأحياء المجهرية المسببة للأمراض في الوسط المائي بنفس طريقة الأكسدة ويؤثر في الخلايا الحية من خلال تخريب جدار الخلية وإيقاف النمو والتكاثر, ويستمر تأثيره في الوسط المائي لفترة أطول, ولا يتفاعل مع الأمونيا ويمتاز بأنتقائية في التعامل مع المواد العضوية ومسببات الأمراض الموجودة في الماء. أٌسُتخدم ثنائي أوكسيد الكلور أول مرة عام1944 للسيطرة على مشاكل الطعم والرائحة, إذ لايتأثر بحامضية المحلول ويعد هذا من أهم محاسنه التي تفوق بها على الكلورين وباقي المعقمات فضلاً عن مقاومته الكبيرة لإعادة تكاثر ونمو البكتريا(8).
5- الكلور ومصادره Chlorine and sources
الكلورة Chlorination:- هي عملية إضافة كمية كافية من الكلور لمياه الشرب للتخلص من الكائنات الحية المجهرية المسببة للامراض وجعل المياه صالحة للاستهلاك البشري والحيواني (9). والكلور هو المعقم الاكثر أستخداما ًفي محطات تصفية المياه ويكون مصدر الكلور المستخدم للتعقيم بأحدى الأشكال الثلاثة الأتية(10):
1-غاز الكلور Chlorine gas
2-هايبوكلوريت الصوديوم Sodium hypochlorite
3-هايبوكلوريت الكالسيوم Calcium hypochlorite
2-1-1-2: غاز الكلور Cl2 Chlorine gas
الكلور غاز أصفر مخضر له رائحة شديدة ومميزة, سام وخطير على الصحة العامة , صيغته الجزيئية Cl2, شديد الذوبان في الماء ويتحلل بسرعة ليكون حامض الهايبوكلوروز HOCl كما في المعادلة الأتية(11) :
Cl2(g) + H2O ↔ HOCl + HCl………(3)
حامض الهايبوكلوروز HOCl المتكون يتحلل بدوره الى آيون الهايبوكلوريت (OCl-) وآيون الهيدروجين H+ كما في المعادلة الاتية :
HOCl ↔ OCl- + H+ …….. (4)
2-2-2-1: هايبوكلوريت الصوديوم Sodium Hypochlorite
يتكون ملح هايبوكلوريت الصوديوم NaOCl عندما يذاب غاز الكلور في محلول هيدروكسيد الصوديوم. ويحتوي محلول هايبوكلوريت الصوديوم على 12.5% من الكلور الحر, وعند أضافة هايبوكلوريت الصوديوم الى الماء يتكون حامض الهايبوكلوروزHOCl كما في المعادلة الأتية(12):
NaOCl + H2O → HOCl + Na+ + OH-……… (5)
تشير المعادلة الى أن إضافة هايبوكلوريت الصوديوم الى الماء ينتج حامض الهايبوكلوروزHOCl وهذه المعادلة تشبه كثيرا معادلة تحلل غاز الكلور في الماء ولكن هذا التفاعل ينتج عنه آيونات الهيدروكسيل (-OH) التي تزيد من قيمة pH المحلول على العكس من تحلل غاز الكلور مائيا.
:3-2-2-1 هايبوكلوريت الكالسيوم Calcium Hypochlorite
يتكون هايبوكلوريت الكالسيوم Ca(OCl)2 نتيجة إذابة غاز الكلور في محلول أوكسيد الكالسيوم CaO وهيدروكسيد الصوديوم. وتجارياً يوجد على شكل حبيبات تحتوي عادة على 65% من الكلور الحر, والتفاعل بين هايبوكلوريت الكالسيوم والماء يكون كالأتي (13):
(6) .…… . Ca(OCl)2 + 2H2O → 2HOCl + Ca+2 + 2OH-
ينتج حامض الهايبوكلوروز فضلا عن آيون الهيدروكسيل الذي يزيد من قيمة pH المحلول.
3-1: مصادر الكلور
:1-3-1غاز الكلور Cl2 Chlorine Gas
يمكن الحصول على غاز الكلور بعدة طرائق منها التحليل الكهربائي لملح كلوريد الصوديوم وبكمية اقل من محلول كلوريد البوتاسيوم أو حامض الهيدروكلوريك HCl , أو من التفاعل بين حامض النتريك مع كلوريد الصوديوم , أو من أكسدة حامض الهيدروكلوريك, ويتم انتاجه خارج الموقع من قبل الشركات المصنعة ويُعبأ الكلور بعد أنتاجه كغاز مسال تحت الضغط, وينقل الى مواقع تنقية المياه(14).
: 2-3-1هايبوكلوريت الصوديوم NaOCl Sodium Hypochlorite
يُنتج هايبوكلوريت الصوديوم من التحليل الكهربائي لمحلول ملح كلوريد الصوديوم ويمكن أنتاجه في المواقع أو خارجها, ويشحن بعدها الى مواقع الأستخدام. والمعادلة أدناه تمثل التحليل الكهربائي للمحلول المائي لكلوريد الصوديوم(15):
NaCl + H2O ↔ NaOCl + H2↑………. (7)
يُستخدم هايبوكلوريت الصوديوم عادة كمبيض منزلي بتركيز قد يصل الى 50% ولكن تجارياً لايتجاوز فيه التركيز عن 15% ويعد مصدراً فعالاً من مصادر الكلور ويستخدم بشكل خاص في تعقيم بُرك السباحة إذ يعد المحتوى الملحي من الأمور المفضلة في هذا المجال.
3-3-1: هايبوكلوريت الكالسيوم Ca(OCl)2 Calcium Hypochlorite
وهو مسحوق أبيض يعرف ببودرة البُركة نظراً لكثرة أستخدامها في بُرك السباحة. وينتج من إذابة غاز الكلور في محلول أوكسيد الكالسيوم (الجير) وهيدروكسيد الصوديوم, ويحتوي المنتج النهائي من هايبوكلوريت الكالسيوم على 65% من الكلور الحر و4 - 6% من الجير.
---------------------------------------------------------------
1- H. Hu and P. Shi; E-Product, E-Service and E-Entertainment (ICEEE), International Conference, pp: 1-3 (2010). Bottom of Form
2- M. Facta, Z. Salam and Z. B. Buntat; Telkomnika,Vol. 6(1), 33-38 (2008).
3-Y. Cong; Bioinformatics and Biomedical Engineering, ICBBE, The 2nd International Conference, pp: 3670-3672 (2008).
4- M. K. Sharifi-Yazdi and H. Darghahi; Acta Medica Iranica, Vol. 44(5), 305-308 (2006).
5- M. Guo, H. Hu, W. Liu; Desalination, Vol. 239, 22–28 (2009).
6- P. Drogui, S. Elmaleh, M. Rumeau, C. Bernard and A. Rambaud; Wat. Res., Vol. 35(13), 3235–3241 (2001).
7- D. Mattei1, S. Cataudella, L. Mancini1, L. Tancioni and L. Migliore; Water, Air, and Soil Pollution, Vol. 177, 441–455 (2006).
8- E. Veschetti, B. Cittadini, D. Maresca, G. Citti and M. Ottaviani; Microchemical Journal, Vol. 79, 165–170 (2005).
9- F. J. D. Campo, O. Ordeig, F. J. Mu˜noz; Analytica Chimica Acta, Vol. 554, 98–104 (2005).
10- R. J. Holben, and M. Gaber; "Water Well Disinfection Manual", pp: 19-24 (2003).
11- R. Sadiq, T. Husain and S. Kar; Water, Air, and Soil Pollution, Vol. 138, 123–140 (2002).
13- "4-Log Demonstration Guidance", Pennsylvania’s Safe Drinking Water Act, Vol. 25, 1-6 (2011).
14- Black and Veatch; "White’s handbook of chlorination and alternative disinfectants" John Wiley & Sons, Inc 5th Ed, pp: 174-229 (2010).
15- H. C. Genuino, M. Pythias and B. Espino; Arch Environ Contam Toxicol, Vol. 62, 369–379 (2012).
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|