Read More
Date: 6-2-2017
1525
Date: 29-1-2017
1399
Date: 2-2-2017
1649
|
Step Three: Stellar Black Holes
Scientists now know that neutron stars like the one in the Crab Nebula are not the last word, so to speak, in the awesome story of stellar collapse. That distinction belongs to the black hole. Light is just barely able to escape the deep gravity well of a neutron star, so in a sense it almost qualifies for black hole status. In fact, says John Gribbin, “A neutron star sits on the very threshold of being a black hole.” One major factor that sets black holes apart from neutron stars, however, is that no light can escape from a black hole; light and everything else that gets too close to a black hole becomes trapped inside its gravity well forever.
A stellar black hole forms from the collapse of a star having more than eight times the mass of the Sun. So powerful is the force of the inrushing matter that it bypasses both the white dwarf and neutron star stages and compresses that matter into an even denser state. In fact, the matter keeps on falling down the star’s gravity well in a sort of neverending death spiral. This is because the gravity well of a black hole is like a bottomless pit, from which nothing can escape.
Not surprisingly, this densest of superdense objects jams an extremely large amount of material into a very small volume of space. A stellar black hole is surprisingly small, therefore. One formed during the death of a star having eight solar masses would probably be only about the size of a small house. It is important to remember that most of the former star’s original matter is still inside the black hole. (Some of its matter was ejected into space during the supernova accompanying the star’s collapse.) That means that the object’s gravitational pull will be roughly the same as that of the original star. Any planets orbiting the star before its collapse would continue orbiting the black hole, which would not capture and consume them unless they strayed too close to it.
The survival of a planet and the survival of living things that might inhabit it are two different things, however. A majority of life forms that happen to exist on planets orbiting a star that becomes a black hole will die from powerful radiation released during the catastrophic collapse and supernova. And any life that has the misfortune to survive this disaster will quickly freeze to death after the star stops radiating light and heat. Clearly, the formation of a stellar black hole is one of the most awesome and potentially lethal events that can occur in nature.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|