المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
العمل الجيومورفي للثلاجة
2025-01-11
مظاهر الارساب الريحي
2025-01-11
المظاهر الأرضية للرياح
2025-01-11
Acute respiratory distress syndrome (ARDS)
2025-01-11
المظاهر الكارستية الناتجة عن عمليات البناء (الترسيب)
2025-01-11
Giant cell (temporal) arteritis
2025-01-11

تعقيم التربة في البيوت المحمية
20-2-2017
الظواهر الصوتية (التوصل)
15-4-2019
التصنيف الوظيفي - التصنيف الوظيفي الرباعي
13/10/2022
الآثار الإيجابية للتقوى
2023-06-12
Automated DNA Sequencing
20-11-2020
اختيار شكل النموذج المستخدم في فحص الاجهاد والتوتر
29-12-2017

Topological Spaces-Connected Topological Spaces  
  
1359   02:42 مساءاً   date: 26-9-2016
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 23-5-2021 1445
Date: 24-6-2021 1325
Date: 27-6-2021 1570

Definition : A topological space X is said to be connected if the empty set ∅ and the whole space X are the only subsets of X that are both open and closed.

Lemma 1.1 A topological space X is connected if and only if it has the following property: if U and V are non-empty open sets in X such that X = U ∪ V , then U ∩ V is nonempty.

Proof If U is a subset of X that is both open and closed, and if V = X U,  then U and V are both open, U ∪ V = X and U ∩ V = ∅. Conversely if U and V are open subsets of X satisfying U ∪ V = X and U ∩ V = ∅, then U = X V , and hence U is both open and closed. Thus a topological space X is connected if and only if there do not exist non-empty open sets U and V such that U ∪ V = X and U ∩ V = ∅. The result follows.

Let Z be the set of integers with the usual topology (i.e., the subspace topology on Z induced by the usual topology on R). Then {n} is open for all n ∈ Z, since

                                    {n} = Z ∩ {t ∈ R : |t − n| <1/2}.

It follows that every subset of Z is open (since it is a union of sets consisting of a single element, and any union of open sets is open). It follows that a function f: X → Z on a topological space X is continuous if and only if f−1 (V ) is open in X for any subset V of Z. We use this fact in the proof of the next theorem.

Proposition 1.2 A topological space X is connected if and only if every continuous function f: X → Z from X to the set Z of integers is constant.

Proof Suppose that X is connected. Let f: X → Z be a continuous function.

Choose n ∈ f(X), and let

                        U = {x ∈ X : f(x) = n}, V = {x ∈ X : f(x) ≠n}.

Then U and V are the preimages of the open subsets {n} and Z {n} of Z, and therefore both U and V are open in X. Moreover U ∩ V = ∅, and X = U ∪ V . It follows that V = X U, and thus U is both open and closed.  Moreover U is non-empty, since n ∈ f(X). It follows from the connectedness of X that U = X, so that f: X → Z is constant, with value n.

Conversely suppose that every continuous function f: X → Z is constant.

Let S be a subset of X which is both open and closed. Let f: X → Z be defined by

                               

 

Now the preimage of any subset of Z under f is one of the open sets ∅, S, X S and X. Therefore the function f is continuous. But then the function f is constant, so that either S = ∅ or S = X. This shows that X is connected.

Lemma 1.3 The closed interval [a, b] is connected, for all real numbers a and b satisfying a ≤ b.

Proof Let f: [a, b] → Z be a continuous integer-valued function on [a, b]. We show that f is constant on [a, b]. Indeed suppose that f were not constant.  Then f(τ ) ≠f(a) for some τ ∈ [a, b]. But the Intermediate Value Theorem would then ensure that, given any real number c between f(a) and f(τ ), there would exist some t ∈ [a, τ ] for which f(t) = c, and this is clearly impossible,  since f is integer-valued. Thus f must be constant on [a, b]. We now deduce from Proposition 1.2 that [a, b] is connected.

Example: Let X = {(x, y) ∈ R2: x ≠0}. The topological space X is not connected. Indeed if f: X → Z is defined by

                        

then f is continuous on X but is not constant.

A concept closely related to that of connectedness is path-connectedness.

Let x0 and x1 be points in a topological space X. A path in X from x0 to x1 is defined to be a continuous function γ: [0, 1] → X such that γ(0) = x0 and γ(1) = x1. A topological space X is said to be path-connected if and only if,  given any two points x0 and x1 of X, there exists a path in X from x0 to x1.

Proposition 1.4 Every path-connected topological space is connected.

Proof Let X be a path-connected topological space, and let f: X → Z be a continuous integer-valued function on X. If x0 and x1 are any two points of X then there exists a path γ: [0, 1] → X such that γ(0) = x0 and γ(1) = x1. But then f ◦ γ: [0, 1] → Z is a continuous integer-valued function on [0, 1]. But  [0, 1] is connected (Lemma 1.3), therefore f◦γ is constant (Proposition 1.2).  It follows that f(x0) = f(x1). Thus every continuous integer-valued function on X is constant. Therefore X is connected, by Proposition 1.30.

The topological spaces R, C and Rn are all path-connected. Indeed, given any two points of one of these spaces, the straight line segment joining these two points is a continuous path from one point to the other. Also the n-sphere Sn is path-connected for all n > 0. We conclude that these topological spaces are connected.

Let A be a subset of a topological space X. Using Lemma 1.1 and the definition of the subspace topology, we see that A is connected if and only if the following condition is satisfied:

• if U and V are open sets in X such that A∩U and A∩V are non-empty and A ⊂ U ∪ V then A ∩ U ∩ V is also non-empty.

Lemma 1.5 Let X be a topological space and let A be a connected subset of X. Then the closure Ᾱ of A is connected.

Proof It follows from the definition of the closure of A that Ᾱ ⊂ F for any closed subset F of X for which A ⊂ F. On taking F to be the complement of some open set U, we deduce that Ᾱ∩ U = ∅ for any open set U for which A ∩ U = ∅. Thus if U is an open set in X and if Ᾱ ∩ U is non-empty then A ∩ U must also be non-empty.

Now let U and V be open sets in X such that Ᾱ ∩ U and Ᾱ∩ V are non-empty and Ᾱ ⊂ U ∪ V . Then A ∩ U and A ∩ V are non-empty, and A⊂ U ∪ V . But A is connected. Therefore A ∩ U ∩ V is non-empty, and thus Ᾱ ∩ U ∩ V is non-empty. This shows that Ᾱ is connected.

Lemma 1.6 Let f:X → Y be a continuous function between topological spaces X and Y , and let A be a connected subset of X. Then f(A) is connected.

Proof Let g: f(A) → Z be any continuous integer-valued function on f(A).

Then g ◦ f: A → Z is a continuous integer-valued function on A. It follows from Proposition 1.30 that g ◦ f is constant on A. Therefore g is constant on f(A). We deduce from Proposition 1.30 that f(A) is connected.

Lemma 1.7 The Cartesian product X × Y of connected topological spaces X and Y is itself connected.

Proof Let f: X×Y → Z be a continuous integer-valued function from X×Y to Z. Choose x0 ∈ X and y0 ∈ Y . The function x → f(x, y0) is continuous on X, and is thus constant. Therefore f(x, y0) = f(x0, y0) for all x ∈ X. Now fix x. The function y → f(x, y) is continuous on Y , and is thus constant.

Therefore

                      f(x, y) = f(x, y0) = f(x0, y0)

for all x ∈ X and y ∈ Y . We deduce from Proposition 1.30 that X × Y is connected.

We deduce immediately that a Finite Cartesian product of connected topological spaces is connected.

Proposition 1.8 Let X be a topological space. For each x ∈ X, let Sx be the union of all connected subsets of X that contain x. Then

(i) Sx is connected,

(ii) Sx is closed,

(iii) if x, y ∈ X, then either Sx = Sy, or else Sx ∩ Sy = ∅.

Proof Let f: Sx→ Z be a continuous integer-valued function on Sx, for some x ∈ X. Let y be any point of Sx. Then, by definition of Sx, there exists some connected set A containing both x and y. But then f is constant on A,  and thus f(x) = f(y). This shows that the function f is constant on Sx. We deduce that Sx is connected. This proves (i). Moreover the closure  is connected, by Lemma 1.33. Therefore v  ⊂ Sx. This shows that Sx is closed,  proving (ii).

Finally, suppose that x and y are points of X for which Sx ∩ Sy ≠∅. Let f: Sx ∪ Sy → Z be any continuous integer-valued function on Sx ∪ Sy. Then f is constant on both Sx and Sy. Moreover the value of f on Sx must agree with that on Sy, since Sx ∩ Sy is non-empty. We deduce that f is constanton Sx ∪ Sy. Thus Sx ∪ Sy is a connected set containing both x and y, and thus Sx ∪Sy ⊂ Sx and Sx ∪Sy ⊂ Sy, by definition of Sx and Sy. We conclude that Sx = Sy. This proves (iii).

Given any topological space X, the connected subsets Sx of X defined as n the statement of Proposition 1.8 are referred to as the connected components of X. We see from Proposition 1.8, part (iii) that the topological space X is the disjoint union of its connected components.

Example : The connected components of

 {(x, y) ∈ R2: x ≠ 0} are{(x, y) ∈ R2: x > 0} and {(x, y) ∈ R2: x < 0}

Example : The connected components of

                  {t ∈ R : |t − n| <1/2for some integer n}.

are the sets Jn for all n ∈ Z, where Jn = (n −1/2, n +1/2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.