المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مدارات الأقمار الصناعية Satellites Orbits
2025-01-11
كفران النعم في الروايات الإسلامية
2025-01-11
التلسكوبات الفضائية
2025-01-11
مقارنة بين المراصد الفضائية والمراصد الأرضية
2025-01-11
بنات الملك شيشنق الثالث
2025-01-11
الشكر وكفران النعمة في القرآن
2025-01-11

Integrated- circuit resistors
13-4-2021
العصور التاريخية لحركة النقل - عصور ما قبل التاريخ
6/12/2022
Reaction of Superoxides
11-6-2020
Non-aqueous coordination chemistry
17-1-2018
الموطن الأصلي للاكيدنيا JAPANEES LOQUAT
2023-04-02
معنى الإمام
13-4-2017

Topological Spaces-A Criterion for Continuity  
  
2375   02:45 مساءاً   date: 26-9-2016
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 8-7-2021 1775
Date: 16-6-2021 1653
Date: 10-7-2021 2484

We now show that, if a topological space X is the union of a finite collection of closed sets, and if a function from X to some topological space is continuous on each of these closed sets, then that function is continuous on X.

Lemma 1.1 Let X and Y be topological spaces, let f: X → Y be a function from X to Y , and let X = A1∪A2∪· · ·∪Ak, where A1, A2, . . . , Ak are closed sets in X. Suppose that the restriction of f to the closed set Ai is continuous for i = 1, 2, . . . , k. Then f: X → Y is continuous.

Proof A function f: X → Y is continuous if and only if f−1 (G) is closed in X for every closed set G in Y (Lemma 1.6). Let G be an closed set in Y . Then f−1 (G) ∩ Aiis relatively closed in Ai for i = 1, 2, . . . , k, since the restriction of f to Ai is continuous for each i. But Ai is closed in X, and therefore a subset of Ai is relatively closed in Ai if and only if it is closed in X. Therefore f−1 (G) ∩ Aiis closed in X for i = 1, 2, . . . , k. Now f−1 (G) isthe union of the sets f−1 (G) ∩ Ai for i = 1, 2, . . . , k. It follows that f−1 (G), being a finite union of closed sets, is itself closed in X. It now follows from Lemma  that f: X → Y is continuous.

Example: Let Y be a topological space, and let α: [0, 1] → Y and β: [0, 1] → Y be continuous functions defined on the interval [0, 1], where α(1) = β(0).

Let γ: [0, 1] → Y be defined by

Now γ|[0, 1/2] = α ◦ ρ where ρ: [0, 1/2] → [0, 1] is the continuous function defined by ρ(t) = 2t for all t ∈ [0, 1/2]. Thus γ|[0, 1/2] is continuous, being a composition of two continuous functions. Similarly γ [1/2, 1] is continuous. The subintervals [0, 1/2 ] and [1/2 , 1] are closed in [0,1], and [0,1] is the union of these two subintervals. It follows from Lemma 1.1 that γ: [0; 1] ! Y is continuous.

 

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.