المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مدارات الأقمار الصناعية Satellites Orbits
2025-01-11
كفران النعم في الروايات الإسلامية
2025-01-11
التلسكوبات الفضائية
2025-01-11
مقارنة بين المراصد الفضائية والمراصد الأرضية
2025-01-11
بنات الملك شيشنق الثالث
2025-01-11
الشكر وكفران النعمة في القرآن
2025-01-11

الإذن للناس لعيادته
9-5-2016
الموت Death
9-1-2018
وظائف العناصر الغذائية في النبات
15-6-2016
رأي فريدمـان في السياسـة النقديـة
15-10-2020
Prime Divisor
17-2-2019
استحباب الزكاة‌ في غلاّت الطفل ومواشيه.
21-11-2015

Carl Wilhelm Borchardt  
  
143   02:54 مساءاً   date: 20-10-2016
Author : G Frei
Book or Source : Zur Geschichte des Crelleschen Journals, J. Reine Angew. Math
Page and Part : ...


Read More
Date: 26-10-2016 148
Date: 5-11-2016 359
Date: 26-10-2016 180

 

Born: 22 February 1817 in Berlin, Germany

Died: 27 June 1880 in Rudersdorf (near Berlin), Germany


Carl Borchardt was born into a Jewish family. His father, Moritz Borchardt, was a merchant who was very well off and a very respected member of the community. Carl's mother was Emma Heilborn. He was tutored privately by a number of outstanding tutors, the best known of whom were Plücker and Steiner. He studied at Berlin from 1836 under Dirichlet then, in 1839, he went to Königsberg and studied under Bessel, Franz Neumann and Jacobi. Certainly Borchardt was impressed with Franz Neumann and, much later, he was one of three mathematicians who proposed Franz Neumann for external membership of the Berlin Academy in 1853.

Borchardt's doctoral work, on non-linear differential equations, was supervised by Jacobi and submitted in 1843. However, the thesis was not published and has since been lost. Jacobi was in poor health and it was agreed that he could spend a year in Italy convalescing. He went with Borchardt and they spent time in both Rome and Naples. Dirichlet and Steiner were also in Rome at the same time and it proved a useful time for Borchardt. The year 1846-47 he spent in Paris where he met Chasles, Hermite and Liouville. He attended a course by Liouville on doubly periodic functions and although Liouville intended to publish the notes which Borchardt took of his lectures, in the end they were not published due to a priority dispute between Liouville and Hermite. Borchardt married Rosa Oppenheim and recently there has been speculation that after Borchardt's death, Rosa had a child with Weierstrass.

Borchardt taught at the University of Berlin from 1848 when he was appointed as a Privatdozent. He quickly became a close personal friend of Weierstrass and was one of the privileged few, along with Sofia Kovalevskaya, whom Weierstrass addressed with the familiar 'Du' form. He succeeded Crelle as editor of Crelle's Journal in 1856, a task he undertook until 1880 despite not being in very good health. The correct title of the Journal was the Journal für die Reine und Angewandte Mathematik but it had been known as Crelle's Journal up to the time Borchardt took over as editor. The journal was then often referred to as "Borchardt's Journal" or in France as "Journal de M Borchardt". After Borchardt's death, the Journal für die Reine und Angewandte Mathematik again became known as Crelle's Journal.

He did important research on the arithmetic geometric mean continuing work in this area which had been begun by Gauss and Lagrange. In 1881 Borchardt published an algorithm for the arithmetic-geometric mean of two elements from (two) sequences, although it was actually first proposed by Gauss in a letter to Pfaff written in 1800. Although Gauss's letter is lost we know its contents through Pfaff's reply which was published in Gauss's Complete Works and indicates that Gauss had discovered the result. From this 1881 paper by Borchardt the name "Borchardt algorithms" has come into use to describe algorithms of this type. Borchardt also generalised results of Kummer on equations determining the secular disturbances of the planets. A secular disturbance is one which is not periodic, but continually acts in the same direction. In fact this was his first contribution and was published in his first paper of 1846. In this work he used determinants and Sturm functions [1]:-

In several further papers Borchardt applied the theory of determinants to algebraic equations, mostly in connection with symmetric functions, the theory of elimination, and interpolation.

After Jacobi's death there was considerable speculation as to the exact role he had played in the theory of elliptic functions. This was partially answered when Jacobi's letters to Lagrange were published by Bertrand in 1869 but the position was still somewhat confused as the letters from Lagrange to Jacobi were not included in this work. Borchardt completed publishing the remaining parts of the correspondence in 1875 and Jacobi was then able to get full recognition for his contributions to the theory of elliptic functions made independent of those of Abel. Borchardt contributed to spreading the mathematical ideas introduced by Jacobi but he also spread Jacobi's ideas on the way that universities should be organised, namely in a research oriented way.

Borchardt's complete works, published in 1888, contains 25 papers and, in addition to the topics discussed above, contains papers on maxima and on the theory of elasticity. Finally we note that the first of the eight volumes of Jacobi's Collected Works was edited by Borchardt and published in 1881. Borchardt died before being able to edit further volumes which were edited by Weierstrass.


 

  1. C J Scriba, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900530.html

Books:

  1. M d'Ocagne, Carl Wilhelm Borchardt et son oevre (Brussels, 1890).
  2. G Frei, Zur Geschichte des Crelleschen Journals, J. Reine Angew. Math. 500 (1998), 1-4.
  3. W Wieslaw, German analysts at the turn of the 19th-20th centuries, Opuscula Math. No. 13 (1993), 9; 16; 75-90.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.