المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

Fermat,s Little Theorem
1-9-2020
وأما بنعمة ربك فحدث
15-5-2020
غارة عبد الله بن مسعدة على تيماء
18-10-2015
لماذا كنّي الإمام علي عليه‌ السلام بـ « أبو تراب »؟
28-6-2022
حشرة حفار ساق السفط Macrotoma palmata f التي تصيب النخيل
8-1-2016
مبيدات الأكاروسات غير العضوية
10-7-2021

Hermann Hankel  
  
226   01:31 مساءاً   date: 12-12-2016
Author : M J Crowe
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 8-12-2016 153
Date: 12-12-2016 126
Date: 12-12-2016 203

Born: 14 February 1839 in Halle, Germany

Died: 29 August 1873 in Schramberg (near Tübingen), Germany


Hermann Hankel's father was Wilhelm Gottlieb Hankel who was a physicist at Halle at the time Hermann was born. Hermann began his education in Halle but, in 1849 Wilhelm was appointed to the chair of physics at Leipzig so the family moved to Leipzig where Hermann attended the Nicolai Gymnasium. At the gymnasium he [1]:-

... improved his Greek by reading the ancient mathematicians in the original.

In 1857 Hankel entered the University of Leipzig where he studied mathematics with Möbius and physics with his own father. Following the tradition in Germany at that time Hankel did not complete his studies at one university, but moved to several different universities during the course of his studies. From Leipzig he went to Göttingen in 1860 where he became a student of Riemann and then, in the following year, he worked with Weierstrass and Kronecker in Berlin. He received his doctorate for a thesis Über eine besondere Classe der symmetrischen Determinanten in 1862.

Hankel's habilitation was accepted in 1863 and he began teaching at Leipzig where he was appointed extraordinary professor in 1867. The appointment as extraordinary professor had been in the spring but by the autumn of the same year Hankel was at Erlangen to take up an appointment as ordinary professor. He married Marie Dippe in Erlangen but again he would move fairly soon, accepting the chair at Tübingen in 1869.

He worked on the theory of complex numbers, the theory of functions and the history of mathematics. His work on complex analysis, however, is not considered of the first rank and in [8] he is included with those who contributed but whose:-

... influence on the foundations of complex analysis was not as essential as that of those mathematicians discussed in more detail [Riemann, Weierstrass, Hurwitz, Bieberbach ...]

Hankel made a systematic study of the rules of arithmetic with his Prinzip der Permanenz der formalen Gesetze (1867), see [7]. He wrote another important work which was also published in 1867 Theorie der complexen Zahlensysteme which did much to make Grassmann's ideas better known. This work [1]:-

... constitutes a lengthy presentation of much of what was then known of the real, complex, and hypercomplex number systems. Beginning with a revised statement of George Peacock's principle of permanence of formal laws, he developed complex numbers as well as such higher algebraic systems as Möbius' barycentric calculus, some of Hermann Grassmann's algebras, and W R Hamilton's quaternions. Hankel was the first to recognise the significance of Grassmann's long-neglected writings ...

Hankel looked at Riemann's integration theory and restated it in terms of measure theoretic concepts. This, and other work he did in this area, constitutes progress towards our current integration theories. He is remembered for the Hankel transformation which occurs in the study of functions which depend only on the distance from the origin. He also studied functions, now named Hankel functions or Bessel functions of the third kind, in a series of papers which appeared in Mathematische Annalen.

His historical writings are rather hard to evaluate since they contain many errors, yet they are filled with brilliant insight. In the same way that he saw the importance of Grassmann's work, Hankel also must have considerable credit for seeing the importance of Bolzano's work on infinite series.


 

  1. M J Crowe, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830901844.html

Articles:

  1. A I Borodin, Mathematical calendar for the 1988/89 academic year (Russian), Mat. v Shkole (6) (1988), 60-62.
  2. M Cantor, Allgemeinen deutsche Biographie X (Leipzig, 1879), 516-519.
  3. A F Monna, Hermann Hankel, Nieuw Arch. Wisk. (3) 21 (1973), 64-87.
  4. J Tappenden, Geometry and generality in Frege's philosophy of arithmetic, Synthese 102 (3) (1995), 319-361.
  5. W von Zahn, Hermann Hankel, Mathematische Annalen 7 (1874), 583-590.
  6. P G J Vredenduin, Gleanings from the history of the negative number (Dutch), Euclides (Groningen) 61 (10) (1985/86), 331-337.
  7. W Wieslaw, German analysts at the turn of the 19th-20th centuries (Polish), Opuscula Math. No. 13 (1993), 9, 16, 75-90.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.