المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

مستحبات الطعام
12-4-2017
المراد من مصر
2023-05-25
دوران حكم الامر بين محذورين
1-8-2016
حكم الإنزال نهارا عمدا.
19-1-2016
معنى لفظة أحد‌
1-2-2016
مرض التدهور السريع في الموالح
12-1-2016

Simplicial Complexes-Simplicial Complexes in Euclidean Spaces  
  
1337   10:35 صباحاً   date: 25-6-2017
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 26-5-2021 1502
Date: 19-6-2021 1622
Date: 9-6-2021 1398

Definition Let σ and τ be simplices in Rk . We say that τ is a face of σ if the set of vertices of τ is a subset of the set of vertices of σ. A face of σ is said to be a proper face if it is not equal to σ itself. An r-dimensional face of σ is referred to as an r-face of σ. A 1-dimensional face of σ is referred to as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and edges of any simplex are by definition faces of the simplex.

Definition A finite collection K of simplices in Rk is said to be a simplicial complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1 ∩ σ2 = ∅ or else σ1 ∩ σ2 is a common face of both σ1 and σ2.

The dimension of a simplicial complex K is the greatest non-negative integer n with the property that K contains an n-simplex. The union of all the simplices of K is a compact subset |K| of Rk referred to as the polyhedron of K. (The polyhedron is compact since it is both closed and bounded in Rk .)

Example Let Kσ consist of some n-simplex σ together with all of its faces.

Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.

Lemma 1.2 Let K be a simplicial complex, and let X be a topological space.

A function f: |K| → X is continuous on the polyhedron |K| of K if and only if the restriction of f to each simplex of K is continuous on that simplex.

Proof If a topological space can be expressed as a finite union of closed subsets, then a function is continuous on the whole space if and only if its restriction to each of the closed subsets is continuous on that closed set. The required result is a direct application of this general principle.

We shall denote by Vert K the set of vertices of a simplicial complex K  (i.e., the set consisting of all vertices of all simplices belonging to K). A collection of vertices of K is said to span a simplex of K if these vertices are the vertices of some simplex belonging to K.

Definition: Let K be a simplicial complex in Rk . A subcomplex of K is a collection L of simplices belonging to K with the following property:

• if σ is a simplex belonging to L then every face of σ also belongs to L.

 Note that every subcomplex of a simplicial complex K is itself a simplicial complex.

Definition Let v0, v1, . . . , vq be the vertices of a q-simplex σ in some Euclidean space Rk . We define the interior of the simplex σ to be the set of all points of σ that are of the form  where tj > 0 for j = 0, 1, . . . , q and  One can readily verify that the interior of the simplex σ consists of all points of σ that do not belong to any proper face of σ. (Note that, if σ ∈ Rk, then the interior of a simplex defined in this fashion will not coincide with the topological interior of σ unless dim σ = k.)

Note that any point of a simplex σ belongs to the interior of a unique face of σ. Indeed let v0, v1, . . . , vq be the vertices of σ, and let x ∈ σ. Then

The unique face of σ containing x in its interior is then the face spanned by those vertices vj for which tj > 0.

Lemma 1.3 Let K be a finite collection of simplices in some Euclidean space Rk , and let |K| be the union of all the simplices in K. Then K is a simplicial complex (with polyhedron |K|) if and only if the following two conditions are satisfied:

• K contains the faces of its simplices,

• every point of |K| belongs to the interior of a unique simplex of K.

Proof Suppose that K is a simplicial complex. Then K contains the faces of its simplices. We must show that every point of |K| belongs to the interior of a unique simplex of K. Let x ∈ |K|. Then x belongs to the interior of a face σ of some simplex of K (since every point of a simplex belongs to the interior of some face). But then σ ∈ K, since K contains the faces of all its simplices. Thus x belongs to the interior of at least one simplex of K.

Suppose that x were to belong to the interior of two distinct simplices σ and τ of K. Then x would belong to some common face σ ∩ τ of σ and τ  (since K is a simplicial complex). But this common face would be a proper face of one or other of the simplices σ and τ (since σ ≠τ ), contradicting the fact that x belongs to the interior of both σ and τ . We conclude that the simplex σ of K containing x in its interior is uniquely determined, as required.

Conversely, we must show that any collection of simplices satisfying the given conditions is a simplicial complex. Since K contains the faces of all its simplices, it only remains to verify that if σ and τ are any two simplices of K with non-empty intersection then σ ∩ τ is a common face of σ and τ .

Let x ∈ σ ∩ τ . Then x belongs to the interior of a unique simplex ω of K. However any point of σ or τ belongs to the interior of a unique face of that simplex, and all faces of σ and τ belong to K. It follows that ω is a common face of σ and τ , and thus the vertices of ω are vertices of both σ and τ . We deduce that the simplices σ and τ have vertices in common, and that every point of σ ∩ τ belongs to the common face ρ of σ and τ spanned by these common vertices. But this implies that σ ∩ τ = ρ, and thus σ ∩ τ is a common face of both σ and τ , as required.

Definition : A triangulation (K, h) of a topological space X consists of a simplicial complex K in some Euclidean space, together with a homeomorphism h: |K| → X mapping the polyhedron |K| of K onto X.

The polyhedron of a simplicial complex is a compact Hausdorff space.  Thus if a topological space admits a triangulation then it must itself be a compact Hausdorff space.

Lemma 1.4 Let X be a Hausdorff topological space, let K be a simplicial complex, and let h: |K| → X be a bijection mapping |K| onto X. Suppose that the restriction of h to each simplex of K is continuous on that simplex. Then the map h: |K| → X is a homeomorphism, and thus (K, h) is a triangulation of X.

Proof Each simplex of K is a closed subset of |K|, and the number of simplices of K is finite. It follows from Lemma 1.2 that h: |K| → X is continuous.

Also the polyhedron |K| of K is a compact topological space. But every continuous bijection from a compact topological space to a Hausdorff space is a homeomorphism. Thus (K, h) is a triangulation of X.

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.