المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مدارات الأقمار الصناعية Satellites Orbits
2025-01-11
كفران النعم في الروايات الإسلامية
2025-01-11
التلسكوبات الفضائية
2025-01-11
مقارنة بين المراصد الفضائية والمراصد الأرضية
2025-01-11
بنات الملك شيشنق الثالث
2025-01-11
الشكر وكفران النعمة في القرآن
2025-01-11

السميع البصير
25-10-2014
شروط استجابة الدعاء
9-11-2014
الغلط في نوع الحق المعتدى عليه
17-4-2017
الأنشطة الاتصالية للعلاقات العامة- أولا: النشاط الاتصالي الإعلامي
2023-02-09
صفات المتقين / نَفْسُهُ مِنْهُ فِي عَنَاءٍ
2024-02-25
وقت غسل الجمعة
14-11-2016

Adolph Andrei Pavlovich Yushkevich  
  
153   01:08 مساءً   date: 12-10-2017
Author : I Bashmakova
Book or Source : n Memoriam : Adolph Andrei Pavlovich Yushkevich (1906-1993)
Page and Part : ...


Read More
Date: 9-11-2017 143
Date: 12-10-2017 199
Date: 29-10-2017 143

Born: 15 July 1906 in Odessa, Ukraine

Died: 17 July 1993 in Moscow, Russia


Adolph Pavlovich Yushkevich was called Adolph Pavlovich throughout his life. Born into a Jewish family containing scholars in philosophy and literature, he attended the high school in St Petersburg, then continued his education in Odessa.

Entering the Physics and Mathematics Faculty of the University of Moscow, Adolph Pavlovich was an undergraduate with Gelfond who became his friend for life. They were taught mathematics by Egorov, Luzin and other outstanding mathematicians. Adolph Pavlovich graduated in 1929 and then, from 1930, taught at the Moscow Higher Technical School. He was promoted to professor in 1940 and became Head of Mathematics there in 1941.

In addition to his professorship of mathematics at the Moscow Higher Technical School, Adolph Pavlovich was appointed to the Institute of History of Natural Sciences and Technology in 1945.

The cultural policy Zhdanovism of the Soviet Union was initiated by a 1946 resolution of the Central Committee of the Communist Party. There was an attempt to eliminate all traces of Westernism, or cosmopolitanism, from Soviet life. The policy continued until Stalin's death in 1953, becoming more anti-Semitic in its later stages. Yushkevich suffered under this policy being forced to leave his post at the Moscow Higher Technical School. He was able, however, to keep his post at the Institute of History of Natural Sciences and Technology.

Yushkevich was one of the leading historians of mathematics in the world. His doctorate was on Russian mathematics during the 18th century and he began publishing in 1929 the first of over 300 works on the history of mathematics. He contributed 21 articles to the Dictionary of Scientific Biography which are referenced in this Archive. This Archive also references over 50 articles by Yushkevich about a wide range of mathematicians from the earliest to modern times.

Yushkevich was arguably the leading world authority on Euler and he was one of the leading authorities on medieval mathematics.

In [1] the quality of his work is described in these terms:-

Yushkevich's work was characterised by an exceptional skill in analysing historical sources, irreproachable logic, carefully considered assessments and historical judgements, and a striking ability to illuminate specific problems by placing them in general historical setting.

His interests outside the history of mathematics are described in [1] in these terms:-

Yushkevich was a man of considerable culture, a true representative of the Russian intelligentsia. He spoke many languages, including Latin, and was well acquainted with literature, particularly the works of Russian writers. He took pleasure in rereading Turgenev and Leskov, enjoyed poetry (his favourite poets were Goethe and Puskin), and even composed verses himself. He was keenly interested in painting, and held the French impressionists and Chagall in especially high esteem. He liked Ukrainian songs and Russian love songs of the 19th century, and enjoyed singing them at parties. And he also adored France, especially Paris, which he visited nearly every year during the last three decades of his life.

Yushkevich received many honours for his scholarship in the history of mathematics. He was elected to academies in Germany, Spain, Czechoslovakia and other countries. He was awarded the Koyré Medal by the Académie internationale d'histoire des sciences in 1971, the Sarton Medal of the History of Science Society of the USA in 1978 and the May Prize of the International Commission on the History of Mathematics in 1989, the Prize of the Akademie der Wissenschaft der DDR in 1978 and again in 1983, and the Prize of the Académie des Sciences de France in 1982.


 

Articles:

  1. I Bashmakova et al., In Memoriam : Adolph Andrei Pavlovich Yushkevich (1906-1993), Historia Mathematica 22 (1995), 113-118.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.