تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Tanc Function
المؤلف: Sloane, N. J. A
المصدر: Sequences A079330, A088989, and A115365 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة: ...
11-3-2019
1486
By analogy with the sinc function, define the tanc function by
(1) |
Since is not a cardinal function, the "analogy" with the sinc function is one of functional structure, not mathematical properties. It is quite possible that a better term than , as introduced here, could be coined, although there appears to be no name previously assigned to this function.
The derivative is given by
(2) |
The indefinite integral can apparently not be done in closed form in terms of conventionally defined functions.
This function commonly arises in problems in physics, where it is desired to determine values of for which , i.e., . This is a transcendental equation whose first few solutions are given in the following table and illustrated above.
Sloane | root | |
0 | 0 | |
1 | A115365 | 4.4934094579090641753... |
2 | 7.7252518369377071642... | |
3 | 10.904121659428899827... | |
4 | 14.066193912831473480... | |
5 | 17.220755271930768739... |
The positive solutions can be written explicitly in series form as
(3) |
(OEIS A079330 and A088989), where the series in can be found by series reversion of the series for and
(4) |
for a positive integer (D. W. Cantrell, pers. comm., Jan. 3, 2003). In practice, the first three terms of the series often suffice for obtaining approximate solutions.
Because of the vertical asymptotes of as odd multiples of , this function is much less well-behaved than the sinc function, even as . The plot above shows for integers . The values of giving incrementally smallest values of are , 11, 1317811389848379909481978463177998812826691414678853402757616, ...(OEIS A079331), corresponding to values of , , , , .... Similarly, the values of giving incrementally largest values of are , 122925461, 534483448, 3083975227, 214112296674652, ... (OEIS A079332), corresponding to 1.55741, 2.65934, 3.58205, 4.3311, 18.0078, 18.0566, 556.306, ... (D. W. Cantrell, pers. comm., Jan. 3, 2002). The following table (P. Carmody, pers. comm., Nov. 21, 2003) extends these results up through the 194,000 term of the continued fraction. All these extrema correspond to numerators of the continued fraction expansion of . In addition, since they must be near an odd multiple of in order for to be large, the corresponding denominators must be odd. There is also a very strong correlation between and the value of the subsequent term in the continued fraction expansion (i.e., a high value there implies the prior convergent was a good approximation to ).
smallest | convergent | largest |
1 | 1.55741 | |
2 | ||
4 | ||
15 | 2.659341 | |
17 | 3.582052 | |
19 | 4.331096 | |
29 | 18.007800 | |
118 | ||
136 | ||
233 | 18.056613 | |
315 | 556.306227 | |
1134 | ||
1568 | ||
1718 | ||
2154 | ||
2468 | ||
3230 | ||
3727 | 2750.202396 | |
3763 | 10539.847388 | |
5187 | ||
8872 | ||
9768 | ||
11282 | ||
12284 | ||
15503 | 24263.751532 | |
24604 | ||
153396 | ||
156559 | 228085.415076 |
The sequences of maxima and minima are almost certainly unbounded, but it is not known how to prove this fact.
REFERENCES:
Sloane, N. J. A. Sequences A079330, A088989, and A115365 in "The On-Line Encyclopedia of Integer Sequences."