تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Tangent
المؤلف: Abramowitz, M. and Stegun, I. A.
المصدر: "Circular Functions." §4.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة: ...
11-3-2019
2635
The tangent function is defined by
(1) |
where is the sine function and is the cosine function. The notation is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix).
The common schoolbook definition of the tangent of an angle in a right triangle (which is equivalent to the definition just given) is as the ratio of the side lengths opposite to the angle and adjacent the angle, i.e.,
(2) |
A convenient mnemonic for remembering the definition of the sine, cosine, and tangent is SOHCAHTOA (sine equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, tangent equals opposite over adjacent).
The word "tangent" also has an important related meaning as a line or plane which touches a given curve or solid at a single point. These geometrical objects are then called a tangent line or tangent plane, respectively.
The definition of the tangent function can be extended to complex arguments using the definition
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
where e is the base of the natural logarithm and i is the imaginary number. The tangent is implemented in the Wolfram Language as Tan[z].
A related function known as the hyperbolic tangent is similarly defined,
(7) |
An important tangent identity is given by
(8) |
Angle addition, subtraction, half-angle, and multiple-angle formulas are given by
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
|||
(15) |
The sine and cosine functions can conveniently be expressed in terms of a tangent as
(16) |
|||
(17) |
which can be particularly convenient in polynomial computations such as Gröbner basis since it reduces the number of equations compared with explicit inclusion of and together with the additional relation (Trott 2006, p. 39).
These lead to the pretty identity
(18) |
There is also a beautiful angle addition identity for three variables,
(19) |
Another tangent identity is
(20) |
|||
(21) |
|||
(22) |
where (Beeler et al. 1972). Written explicitly,
(23) |
This gives the first few expansions as
(24) |
|||
(25) |
|||
(26) |
|||
(27) |
|||
(28) |
(OEIS A034867 and A034839).
A beautiful formula that generalizes the tangent angle addition formula, (27), and (28) is given by
(29) |
(Szmulowicz 2005).
There are a number of simple but interesting tangent identities based on those given above, including
(30) |
(Borchardt and Perrott 1930).
The Maclaurin series valid for for the tangent function is
(31) |
|||
(32) |
(OEIS A002430 and A036279), where is a Bernoulli number.
is irrational for any rational , which can be proved by writing as a continued fraction as
(33) |
(Wall 1948, p. 349; Olds 1963, p. 138) and
(34) |
both due to Lambert.
An interesting identity involving the product of tangents is
(35) |
where is the floor function.
The equation
(36) |
which is equivalent to , where is the tanc function, does not have simple closed-form solutions.
The difference between consecutive solutions gets closer and closer to for higher order solutions. The function is sometimes known as the tanc function.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Circular Functions." §4.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 71-79, 1972.
Beeler, M. et al. Item 16 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 9, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/recurrence.html#item16.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 226, 1987.
Borchardt, W. G. and Perrott, A. D. Ex. 33 in A New Trigonometry for Schools. London: G. Bell, 1930.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Jeffrey, A. "Trigonometric Identities." §2.4 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 111-117, 2000.
Olds, C. D. Continued Fractions. New York: Random House, 1963.
Sloane, N. J. A. Sequences A002430/M2100, A034839, A034867, A036279, and A115365 in "The On-Line Encyclopedia of Integer Sequences."
Szmulowicz, F. "New Analytic and Computational Formalism for the Band Structure of -Layer Photonic Crystals." Phys. Lett. A345, 469-477, 2005.
Spanier, J. and Oldham, K. B. "The Tangent and Cotangent Functions." Ch. 34 in An Atlas of Functions.Washington, DC: Hemisphere, pp. 319-330, 1987.
Tropfke, J. Teil IB, §2. "Die Begriffe von Tangens und Kotangens eines Winkels." In Geschichte der Elementar-Mathematik in systematischer Darstellung mit besonderer Berücksichtigung der Fachwörter, fünfter Band, zweite aufl. Berlin and Leipzig, Germany: de Gruyter, pp. 23-28, 1923.
Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/.
Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.
Zwillinger, D. (Ed.). "Trigonometric or Circular Functions." §6.1 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 452-460, 1995.