1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Cantor Set

المؤلف:  Boas, R. P. Jr

المصدر:  A Primer of Real Functions. Washington, DC: Amer. Math. Soc., 1996

الجزء والصفحة:  ...

26-12-2019

1906

Cantor Set

 CantorSet

The Cantor set T_infty, sometimes also called the Cantor comb or no middle third set (Cullen 1968, pp. 78-81), is given by taking the interval [0,1] (set T_0), removing the open middle third (T_1), removing the middle third of each of the two remaining pieces (T_2), and continuing this procedure ad infinitum. It is therefore the set of points in the interval [0,1] whose ternary expansions do not contain 1, illustrated above.

The nth iteration of the Cantor is implemented in the Wolfram Language as CantorMesh[n].

Iterating the process 1 -> 101, 0 -> 000 starting with 1 gives the sequence 1, 101, 101000101, 101000101000000000101000101, .... The sequence of binary bits thus produced is therefore 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ... (OEIS A088917) whose nth term is amazingly given by D(n,n)=P_n(3) (mod 3), where D(n,n) is a (central) Delannoy number and P_n(x) is a Legendre polynomial (E. W. Weisstein, Apr. 9, 2006). The recurrence plot for this sequence is illustrated above.

This produces the set of real numbers {x} such that

 x=(c_1)/3+...+(c_n)/(3^n)+...,

(1)

where c_n may equal 0 or 2 for each n. This is an infinite, perfect set. The total length of the line segments in the nth iteration is

 l_n=(2/3)^n,

(2)

and the number of line segments is N_n=2^n, so the length of each element is

 epsilon_n=l/N=(1/3)^n

(3)

and the capacity dimension is

d_(cap) = -lim_(epsilon->0^+)(lnN)/(lnepsilon)

(4)

= log_32

(5)

= (ln2)/(ln3)

(6)

= 0.630929...

(7)

(OEIS A102525). The Cantor set is nowhere dense, and has Lebesgue measure 0.

A general Cantor set is a closed set consisting entirely of boundary points. Such sets are uncountable and may have 0 or positive Lebesgue measure. The Cantor set is the only totally disconnected, perfect, compact metric space up to a homeomorphism (Willard 1970).


REFERENCES:

Boas, R. P. Jr. A Primer of Real Functions. Washington, DC: Amer. Math. Soc., 1996.

Cullen, H. F. Introduction to General Topology. Boston, MA: Heath, pp. 78-81, 1968.

Gleick, J. Chaos: Making a New Science. New York: Penguin Books, p. 93, 1988.

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 15-20, 1991.

Harris, J. W. and Stocker, H. "Cantor Set." §4.11.4 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 114, 1998.

Sloane, N. J. A. Sequence A102525 in "The On-Line Encyclopedia of Integer Sequences."

Trott, M. The Mathematica GuideBook for Graphics. New York: Springer-Verlag, pp. 9-13, 2004. http://www.mathematicaguidebooks.org/.

Willard, S. §30.4 in General Topology. Reading, MA: Addison-Wesley, 1970.

EN

تصفح الموقع بالشكل العمودي