تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Feigenbaum Constant
المؤلف: Borwein, J. and Bailey, D.
المصدر: Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters
الجزء والصفحة: ...
24-2-2020
3220
The Feigenbaum constant is a universal constant for functions approaching chaos via period doubling. It was discovered by Feigenbaum in 1975 (Feigenbaum 1979) while studying the fixed points of the iterated function
(1) |
and characterizes the geometric approach of the bifurcation parameter to its limiting value as the parameter is increased for fixed . The plot above is made by iterating equation (1) with several hundred times for a series of discrete but closely spaced values of , discarding the first hundred or so points before the iteration has settled down to its fixed points, and then plotting the points remaining.
A similar plot that more directly shows the cycle may be constructed by plotting as a function of . The plot above (Trott, pers. comm.) shows the resulting curves for , 2, and 4.
Let be the point at which a period -cycle appears, and denote the converged value by . Assuming geometric convergence, the difference between this value and is denoted
(2) |
where is a constant and is a constant now known as the Feigenbaum constant. Solving for gives
(3) |
(Rasband 1990, p. 23; Briggs 1991). An additional constant , defined as the separation of adjacent elements of period doubled attractors from one double to the next, has a value
(4) |
where is the value of the nearest cycle element to 0 in the cycle (Rasband 1990, p. 37; Briggs 1991).
For equation (1) with , the onsets of bifurcations occur at , 1.25, 1.368099, 1.39405, 1.399631, ..., giving convergents to for , 2, 3, ... of 4.23374, 4.5515, 4.64617, ....
For the logistic map,
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
(OEIS A006890, A098587, and A006891; Broadhurst 1999; Wolfram 2002, p. 920), where is known as the Feigenbaum constant and is the associated "reduction parameter."
Briggs (1991) calculated to 84 digits, Briggs (1997) to 576 decimal places (of which 344 were correct), and Broadhurst (1999) to 1018 decimal places. It is not known if the Feigenbaum constant is algebraic, or if it can be expressed in terms of other mathematical constants (Borwein and Bailey 2003, p. 53).
Briggs (1991) calculated to 107 digits, Briggs (1997) to 576 decimal places (of which 346 were correct), and Broadhurst (1999) to 1018 decimal places.
Amazingly, the Feigenbaum constant and associated reduction parameter are "universal" for all one-dimensional maps if has a single locally quadratic maximum. This was conjecture by Feigenbaum, and demonstrated rigorously by Lanford (1982) for the case , and by Epstein (1985) for all .
More specifically, the Feigenbaum constant is universal for one-dimensional maps if the Schwarzian derivative
(9) |
is negative in the bounded interval (Tabor 1989, p. 220). Examples of maps which are universal include the Hénon map, logistic map, Lorenz attractor, Navier-Stokes truncations, and sine map . The value of the Feigenbaum constant can be computed explicitly using functional group renormalization theory. The universal constant also occurs in phase transitions in physics.
The value of for a universal map may be approximated from functional group renormalization theory to the zeroth order by solving
(10) |
which can be rewritten as the quintic equation
(11) |
Solving numerically for the smallest real root gives , only 0.7% off from the actual value (Feigenbaum 1988).
For an area-preserving two-dimensional map with
(12) |
|||
(13) |
the Feigenbaum constant is (Tabor 1989, p. 225).
For a function of the form (1), the Feigenbaum constant for various is given in the following table (Briggs 1991, Briggs et al. 1991, Finch 2003), which updates the values in Tabor (1989, p. 225).
3 | 5.9679687038... | 1.9276909638... |
4 | 7.2846862171... | 1.6903029714... |
5 | 8.3494991320... | 1.5557712501... |
6 | 9.2962468327... | 1.4677424503... |
Broadhurst (1999) considered additional Feigenbaum constants. Let and be even functions with and
(14) |
|||
(15) |
and as large as possible. Let be positive numbers with
(16) |
and as small as possible. Also let be the order of the nearest singularity, with
(17) |
as tends to zero. The values of these constants are summarized in the following table.
constant | OEIS | value |
A119277 | 0.83236723690531642484... | |
A119278 | 1.8312589849371314853... | |
A119279 | 2.6831509004740718014... | |
A119280 | 1.3554618047064087438... |
REFERENCES:
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 53, 2003.
Briggs, K. "Simple Experiments in Chaotic Dynamics." Amer. J. Phys. 55, 1083-1089, 1987.
Briggs, K. "How to Calculate the Feigenbaum Constants on Your PC." Austral. Math. Soc. Gaz. 16, 89-92, 1989.
Briggs, K. "A Precise Calculation of the Feigenbaum Constants." Math. Comput. 57, 435-439, 1991.
Briggs, K. M. "Feigenbaum Scaling in Discrete Dynamical Systems." Ph.D. thesis. Melbourne, Australia: University of Melbourne, 1997.
Briggs, K.; Quispel, G.; and Thompson, C. "Feigenvalues for Mandelsets." J. Phys. A: Math. Gen. 24, 3363-3368, 1991.
Broadhurst, D. "Feigenbaum Constants to 1018 Decimal Places." Email dated 22-Mar-1999. http://pi.lacim.uqam.ca/piDATA/feigenbaum.txt.
Campanino, M. and Epstein, H. "On the Existence of Feigenbaum's Fixed Point." Commun. Math. Phys. 79, 261-302, 1981.
Campanino, M.; Epstein, H.; and Ruelle, D. "On Feigenbaum's Functional Equation." Topology 21, 125-129, 1982.
Collet, P. and Eckmann, J.-P. "Properties of Continuous Maps of the Interval to Itself." Mathematical Problems in Theoretical Physics (Ed. K. Osterwalder). New York: Springer-Verlag, 1979.
Collet, P. and Eckmann, J.-P. Iterated Maps on the Interval as Dynamical Systems. Boston, MA: Birkhäuser, 1980.
Derrida, B.; Gervois, A.; and Pomeau, Y. "Universal Metric Properties of Bifurcations." J. Phys. A 12, 269-296, 1979.
Eckmann, J.-P. and Wittwer, P. Computer Methods and Borel Summability Applied to Feigenbaum's Equations. New York: Springer-Verlag, 1985.
Epstein, H. "New Proofs of the Existence of the Feigenbaum Functions." Inst. Hautes Études Sco., Report No. IHES/P/85/55, 1985.
Feigenbaum, M. J. "The Universal Metric Properties of Nonlinear Transformations." J. Stat. Phys. 21, 669-706, 1979.
Feigenbaum, M. J. "The Metric Universal Properties of Period Doubling Bifurcations and the Spectrum for a Route to Turbulence." Ann. New York. Acad. Sci. 357, 330-336, 1980.
Feigenbaum, M. J. "Quantitative Universality for a Class of Non-Linear Transformations." J. Stat. Phys. 19, 25-52, 1978.
Feigenbaum, M. J. "Presentation Functions, Fixed Points, and a Theory of Scaling Function Dynamics." J. Stat. Phys. 52, 527-569, 1988.
Finch, S. R. "Feigenbaum-Coullet-Tresser Constants." §1.9 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 65-76, 2003.
Gleick, J. Chaos: Making a New Science. New York: Penguin Books, pp. 173-181, 1988.
Karamanos, K. and Kotsireas, I. "Addendum: On the Statistical Analysis of the First Digits of the Feigenbaum Constants." J. Franklin Inst. 343, 759-761, 2006.
Lanford, O. E. III. "A Computer-Assisted Proof of the Feigenbaum Conjectures." Bull. Amer. Math. Soc. 6, 427-434, 1982.
Lanford, O. E. III. "A Shorter Proof of the Existence of the Feigenbaum Fixed Point." Commun. Math. Phys. 96, 521-538, 1984.
Michon, G. P. "Final Answers: Numerical Constants." http://home.att.net/~numericana/answer/constants.htm#feigenbaum.
Pickover, C. A. "The Fifteen Most Famous Transcendental Numbers." J. Recr. Math. 25, 12, 1993.
Pickover, C. A. "The 15 Most Famous Transcendental Numbers." Ch. 44 in Wonders of Numbers, Adventures in Mathematics, Mind, and Meaning. Oxford, England: Oxford University Press, pp. 103-106, 2000.
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990.
Sloane, N. J. A. Sequences A006890/M3264, A006891/M1311, A098587, A119277, A119278, A119279, and A119280 in "The On-Line Encyclopedia of Integer Sequences."
Stephenson, J. W. and Wang, Y. "Numerical Solution of Feigenbaum's Equation." Appl. Math. Notes 15, 68-78, 1990.
Stephenson, J. W. and Wang, Y. "Relationships Between the Solutions of Feigenbaum's Equations." Appl. Math. Let. 4, 37-39, 1991.
Stoschek, E. "Modul 33: Algames with Numbers." http://marvin.sn.schule.de/~inftreff/modul33/task33.htm.
Thompson, C. J. and McGuire, J. B. "Asymptotic and Essentially Singular Solutions of the Feigenbaum Equation." J. Stat. Phys. 51, 991-1007, 1988.
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, 1989.
Trott, M. "The Mathematica Guidebooks Additional Material: Second Feigenbaum Constant." http://www.mathematicaguidebooks.org/additions.shtml#S_1_07.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 920, 2002.