1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Modular Arithmetic

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  المرجع الالكتروني للمعلوماتيه

الجزء والصفحة:  ...

10-1-2020

932

Modular Arithmetic

Modular arithmetic is the arithmetic of congruences, sometimes known informally as "clock arithmetic." In modular arithmetic, numbers "wrap around" upon reaching a given fixed quantity, which is known as the modulus (which would be 12 in the case of hours on a clock, or 60 in the case of minutes or seconds on a clock).

Formally, modular arithmetic is the arithmetic of any nontrivial homomorphic image of the ring of integers. For any such homomorphic image R of Z, there is an integer n such that R is isomorphic to the ring Z_n of integers modulo n. The addition in the ring Z_n is determined from addition in Z by computing the remainder, upon division by n, of the sum a+b of two integers a and b. Similarly, for multiplication in the ring Z_n, one multiplies two integers a and b, and computes the remainder upon division of ab by n.

For each positive integer n, the ring Z_n has n elements, namely the equivalence classes of each of the nonnegative integers less than n, under the equivalence relation R that is defined according to the rule aRb iff n divides b-a. It is natural and common to denote the equivalence class [a] (under the equivalence relation R) of a nonnegative integer a<n by a.

For example, in arithmetic modulo 12 (for which the associated ring is C_(12)), the allowable numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. This arithmetic is sometimes referred to as "clock arithmetic" because the additive structure here is the same as that used to determine times for a twelve-hour clock, except that 0 is often replaced, on a clock, by 12. Example calculations in arithmetic modulo 12 include statements like "11+1=0", or "7+8=3", or "5·7=11," although the equal sign = is commonly replaced with the congruence sign = in such statements to indicate that modular arithmetic is being used. More explicitly still, a notation such as

 11+1=0 (mod 12)

is frequently used.

Arithmetic modulo 2 is sometimes referred to as "Boolean arithmetic", because the ring C_2 is the canonical example of a Boolean ring.

EN

تصفح الموقع بالشكل العمودي