تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Gauss,s Constant
المؤلف: Borwein, J. M. and Borwein, P. B
المصدر: Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley
الجزء والصفحة: ...
25-2-2020
838
The reciprocal of the arithmetic-geometric mean of 1 and ,
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
(OEIS A014549), where is the complete elliptic integral of the first kind, is a Jacobi theta function, and is the gamma function. This correspondence was first noticed by Gauss, and was the basis for his exploration of the lemniscate function (Borwein and Bailey 2003, pp. 13-15).
Two rapidly converging series for are given by
(8) |
|||
(9) |
(Finch 2003, p. 421).
Gauss's constant has continued fraction [0, 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, ...] (OEIS A053002).
The inverse of Gauss's constant is given by
(10) |
(OEIS A053004; Finch 2003, p. 420; Borwein and Bailey 2003, p. 13), which has [1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, ...] (OEIS A053003).
The value
(11) |
(OEIS A097057) is sometimes called the ubiquitous constant (Spanier and Oldham 1987; Schroeder 1994; Finch 2003, p. 421), and
(12) |
(OEIS A076390) is sometimes called the second lemniscate constant (Finch 2003, p. 421).
Gauss's constants and are related to the lemniscate constant by
(13) |
|||
(14) |
(Finch 2003, p. 420).
REFERENCES:
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 5, 1987.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Goldman, J. R. The Queen of Mathematics: An Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters, p. 92, 1997.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.
Gosper, R. W. "A Calculus of Series Rearrangements." In Algorithms and Complexity: New Directions and Recent Results. Proc. 1976 Carnegie-Mellon Conference (Ed. J. F. Traub). New York: Academic Press, pp. 121-151, 1976.
Lewanowicz, S. and Paszowski, S. "An Analytic Method for Convergence Acceleration of Certain Hypergeometric Series." Math. Comput. 64, 691-713, 1995.
Schroeder, M. "How Probable is Fermat's Last Theorem?" Math. Intell. 16, 19-20, 1994.
Sloane, N. J. A. Sequences A014549, A053002, A053003, A053004, A076390, and A097057 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Kelvin Functions." Ch. 55 in An Atlas of Functions. Washington, DC: Hemisphere, 1987.
Todd, J. "The Lemniscate Constant." Comm. ACM 18, 14-19 and 462, 1975.