تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Monkey and Coconut Problem
المؤلف: Anning, N.
المصدر: "Monkeys and Coconuts." Math. Teacher 54
الجزء والصفحة: ...
3-6-2020
1730
A Diophantine problem (i.e., one whose solution must be given in terms of integers) which seeks a solution to the following problem. Given men and a pile of coconuts, each man in sequence takes th of the coconuts left after the previous man removed his (i.e., for the first man, , for the second, ..., for the last) and gives coconuts (specified in the problem to be the same number for each man) which do not divide equally to a monkey. When all men have so divided, they divide the remaining coconuts ways (i.e., taking an additional coconuts each), and give the coconuts which are left over to the monkey. If is the same at each division, then how many coconuts were there originally? The solution is equivalent to solving the Diophantine equations
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
which can be rewritten as
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
Since there are equations in the unknowns , , ..., , , and , the solutions span a one-dimensional space (i.e., there is an infinite family of solution parameterized by a single value). The solution to these equations can be given by
(12) |
where is an arbitrary integer (Gardner 1961).
For the particular case of men and left over coconuts, the 6 equations can be combined into the single Diophantine equation
(13) |
where is the number given to each man in the last division. The smallest positive solution in this case is coconuts, corresponding to and ; Gardner 1961). The following table shows how this rather large number of coconuts is divided under the scheme described above.
removed | given to monkey | left |
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | 0 |
If no coconuts are left for the monkey after the final -way division (Williams 1926), then the original number of coconuts is
(14) |
The smallest positive solution for case and is coconuts, corresponding to and coconuts in the final division (Gardner 1961). The following table shows how these coconuts are divided.
removed | given to monkey | left |
624 | 1 | |
499 | 1 | |
399 | 1 | |
319 | 1 | |
255 | 1 | |
0 | 0 |
A different version of the problem having a solution of 79 coconuts is considered by Pappas (1989).
REFERENCES:
Anning, N. "Monkeys and Coconuts." Math. Teacher 54, 560-562, 1951.
Bowden, J. "The Problem of the Dishonest Men, the Monkeys, and the Coconuts." In Special Topics in Theoretical Arithmetic. Lancaster, PA: Lancaster Press, pp. 203-212, 1936.
Gardner, M. "The Monkey and the Coconuts." Ch. 9 in The Second Scientific American Book of Puzzles & Diversions: A New Selection. New York: Simon and Schuster, pp. 104-111, 1961.
Kirchner, R. B. "The Generalized Coconut Problem." Amer. Math. Monthly 67, 516-519, 1960.
Moritz, R. E. "Solution to Problem ." Amer. Math. Monthly 35, 47-48, 1928.
Ogilvy, C. S. and Anderson, J. T. Excursions in Number Theory. New York: Dover, pp. 52-54, 1988.
Olds, C. D. Continued Fractions. New York: Random House, pp. 48-50, 1963.
Pappas, T. "The Monkey and the Coconuts." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 226-227 and 234, 1989.
Williams, B. A. "Coconuts." The Saturday Evening Post, Oct. 9, 1926.