1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Strong Law of Small Numbers

المؤلف:  Gardner, M.

المصدر:  "Mathematical Games: Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243

الجزء والصفحة:  ...

12-8-2020

1399

Strong Law of Small Numbers

The first strong law of small numbers (Gardner 1980, Guy 1988, 1990) states "There aren't enough small numbers to meet the many demands made of them."

The second strong law of small numbers (Guy 1990) states that "When two numbers look equal, it ain't necessarily so." Guy (1988) gives 35 examples of this statement, and 40 more in Guy (1990). For example, example 35 notes that the first few values of the interpolating polynomial (n^4-6n^3+23n^2-18n+24)/24 (erroneously given in Guy (1990) with a coefficient 24 instead of 23) for n=1, 2, ... are 1, 2, 4, 8, 16, .... Thus, the polynomial appears to give the powers of 2, but then continues 31, 57, 99, ... (OEIS A000127). In fact, this sequence gives the maximal number of regions obtained by joining n points around a circle by chords (circle division by chords).

Similarly, example 41 notes the curious fact that the function [e^((n-1)/2)] where [x] is the ceiling function gives the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... (i.e., the first few Fibonacci numbers) for n=0, 1, ..., although it subsequently continues 91, 149, ... (OEIS A005181), which are not Fibonacci numbers.

Another example is provided by a near-identity of trinomial coefficients noticed by Euler.


REFERENCES:

Gardner, M. "Mathematical Games: Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.

Guy, R. K. "The Strong Law of Small Numbers." Amer. Math. Monthly 95, 697-712, 1988.

Guy, R. K. "The Second Strong Law of Small Numbers." Math. Mag. 63, 3-20, 1990.

Guy, R. K. "Graphs and the Strong Law of Small Numbers." In Graph Theory, Combinatorics, and Applications, Vol. 2 (Kalamazoo, MI, 1988). New York: Wiley, pp. 597-614, 1991.

Sloane, N. J. A. Sequences A000127/M1119 and A005181/M0693 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي